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ABSTRACT

The proble of rep1.esenting speech signals in a form at which
will facilitate automatic speech transcription has been investigated The
method of representation selected for experimental study involves the
transformation of speech signals into sequences of periodically sampled
outputs of speech parameter extractors, i. e., devices designed to extract
clues fromn speech signals which will serve to identify the language element
being uttered. Autoriatic extractors have been constructed and data has
been collected to ascertain the degree to which speech sounds can be
identified properly, using several parameters reflecting the location of
formants and spectral shape information.

Methods of completing the transformation, or transcription, of
speech into sequences of language elements suitable for presentation to
a human reader have also been investigated. Test results indicate that
the most easily instrumented transcription methods can be expected to
yield readable transcriptions from the use of a small number of speech
parameters.
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I INTRODUCTION

The general problem with which this study has been concerned is
that ofdetermining efficient methods of transforming speech signals into

sequences of language elements suitable for presentation either to a human
or to a machine. In the case of a hurman recipient, the transformed speech

should convey the same informatilon as would be possible through the use of

a human stenographer and typist. Thus, a machine designed to i mplement
the speech transformation methods might be called a "phonetic typewriter".
if the set of language elements into which the speech signals are transforned

consists of a phonetic alphabet, then such a machmie could be designated

more accurately as an automatic speech transcriber.

An automatic speech transcription capability is applicable to

essentially any communications problem involving (a) human speech as an
information source or relay, (b) a temporary or permanent storage require-
-nenit, and (c) a need for rapid human assimilation of the information. A

person can read printed matter at the rate of many hundreds of words per
minute; however, a speaker generates information at a considerably lower

rate. To achieve the higher rate of assimilation, speech must be converted
by some means to printed English. All current methods of conversion fror

speech to printed text involve either at least one additional person or a con-
siderable delay or both. An automatic speech transcription device would
replace the etra individual as well as eliminate or reduce significantly the
transcription delay.

In addition to and perhaps more important than its utility as a trans-

criber of text, a speech transcription technique inherently carries with it the
capability for voice control of machines. Thus, for instance, instead of the
depression of keys, pedals, buttons and the like as a means of feeding infor-
mation into a computer, a speech transcriber with a word recognition unit

could be used to program as well as insert data into the computer. Thus,
in many applications involving the transfer of human~generated instructions
to machines, a speoech transcriber can serve to relieve the human from the
burden of having to learn new, and usually relatively slow methods of com-
munic-ation, by allowing the use of a natural method a spoken language.

*see [ . -Eadh reference in this report is indicated by a number enclosed

in brackets. The Reference List at the end of the report identifies the
numbers with full descriptions of the references.
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The specific purpose of the current project under Contract No. I
AP30(602)aZ641 is to find an optimum form.at for representation of speech
signals to facilitate automatic speech transcription. It is desired that the
derived representation be optimized with respect to accuracy of represen-
tation, storage requirements, and ease of implementation.

The derivation of such a representation requires that suitable
measurable speech signal properties, or parameters, be found which

serve to preserve the linguistic infor-nation in speech, and also serve 1
as suitable inputs to a language element recognizer. The extraction of
these parameters may be regarded as a transformation, or mapping,
from "Ispeech signal space" to "parameter space". As depicted in Figure !
1, this transformation, T1 , is to be followed by another T 2 , which would
complete the conversion of speech to readable fori by mapping the elements

of parameter space into a space of language elements. Although the primary
purpose of this study has been to investigate the initial transformation, T 1 ,
results have also been obtained for a few methods of completing the trans-
cription of speech, i. e., performing T 2 using a phonetic alpha
language element Space. I

The approach taken on this project has been to investigate first
the accuracy of representation of speech attainable with the simplest form
of implementation and minimum extracted Speech data. Through the sys- I
tematic augmentation of extracted speech parameters and refinement of
recognition methods, the following results have been assured:

1) Speech representation accuracy will always improve as further
effort is ex-ended, and I

Z) Reliable relationships between representation accuracy, infor-

mation storage requirements, and equipment simplicity will be obtained,

from which a judgment as to an optimum combination can be made.

In Section 2 of this report the theory underlying these transcription
methods is revi-ewed. The basis for using a phonetic alphabet, rather than

some other set of language elements, is presented along with discussions
of the problem of selecting appropriate speech parameters and methods of
processing parameter values to recognize letters in the phonetic alphabet,



SIGNAL

PARAEMENT
SPAACE

Figure 1. Two Basic Transformations in the
Representation of Speech
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The representation of speech in parameter spaces formed by two I
combinations of speech param. eters is discussed in Section 3. Data are
presented which indicate the storage requirements and accuracy associated
With these representations.

Specific transcription and word recognition m ethods are described I
in Section 4. Results of experiments conducted to ascertain performance
capabilities of these methods are also included in the fourth section, for

one speech parameter space..

Con clusions regarding the type of speech representatio. which will i
prove most useful for preserving the information content of speech, and
also serve as a convenient means of implementing automatic transcription
techniques are presented in Section 5.

II
I

I
Im

Ie
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2. THEORETICAL BASIS FOR AUTOMATIC SPEECH TRANSCRIPTION

IFThe transformation of speech into readable text iivolves two basic

steps, or subsidiary transforrmations. As previously noted (Figure 1) the
first involves association -of a set of parameter values with each possible
speech signal. The second invoives the association of language elements
with patterns of parameter values. Derivation of these two subsidiary
transformations requires that a suitable list of parameters be selected,
and a method be devised for associating patterns of these parameters with
language elements. Also, a specific set of language elements must be

f selected These three aspects of the speech transformation problem are
discussed in the following subsections.

2. I SELECTION OF LANGUAGE ELEMENTS

T
Several possibilities have been given consideration as language

elements. The most frequently listed elements are words, syllables,
phonemes, and phonetic elements, or "sounds". Several investigations
have been conductedto determine the feasibility of using each of these
language elements as a basis for transcription. * From the standpoint of

- ease of interpretation by a human reader, words are the most attractive
language elements. However, with these elements the problem of selecting
suitable parameters for representing speech is difficult to solve within

• - reasonabe imits on equipment complexity and/or storage requirements.

Perhaps the basic reason for this is that the number of words required to

represent a reasonably broad class of speech signals is large. A rudi-
mentary vocabulary consists of several hundred words. This fact creates
several obstacles to the construction of an automatic transcriber using
words as the language elements. Notable among these is the difficulty of

selecting parameters which are useful for separating more than a few words.
Since words are composed of sequences of the intervals of speech corres-
ponding to different states of the speech source, it is clear that parameters
must be constructed in such a way as to produce different values for these
sequeences. This requirement suggests that parameters should be chosen
by examn'ng a given collection of words and selecting features of these
specific words which tend to separate them. If the vocabulary is to remain
the same, then this can produce a satisfactory result. if, however, the

vocabulary is ever augmented, or even changed by replacement, then
there is no guarantee that the selected.parameters will produce reasonable

separation of the new words. Thus, from the standpoint of either restricting
the speech which can be transformed satisfactorily or requiring maj-or hanges
in the operations involved in speech representation in parameter space, words
are unattractive as language elements.

=Seior i-stnc [ 7] for words, [16] for syllables, and [5] for phonetic
elements or phoneme s.



A related, practical difficulty which arises from the! use of ubrds
as language elements is that the number of positions in parameter space
which can conceivably correspond to words is large. If, for ins tance,
periodic speech sarnples (spaced A seconds apart) are quantized in some
mariner with q possible different values, then the number of possible
positions in parameter space is qT.f , where T is an indcation of the

T,duration of a spoken word. For most words, - is greater than 10, and if
3A

q - 10 (a conservative assumption) thei pararmeter space may consist of
as many as 1060 different points. Of course, if parameters are constructed
from sequences of speech samples, then this number can be reduced tre-
mendusly. The selection of such paratn ters, however, very likely cannot
be accomplished through the systematic examination of combinations of
parameters as suggested in Section 2. 1, because the number of different
words and speech samples involved in a respectable vocabulary would be
too large. Letting w denote the number of words in a vocabulary, and u
denote the nuimber of utterances of each word that would be used as a basis
for learning the distribution of words in parameter space, suppose it is
desired that all combinations of k parameters out of n candidates be examined.

This would require that ( (w) (u)( "l speech samples be processed. For
- 10 samples per word, u ± 10 utterances, n 10 paraimeters, and k -8,

then 450, 000 speech samples would have to be processed to obtain an indi-
cation of the dstribution of only 10:0 words in the spaces formed by all com-
binations of the eight parameters. If 610 samples are obtained each second,
then approximately 40 hours of speech would h.ve to be processed to obtain
the required dta.

Another problem which arises from the use of words as language
elements is that speech signals inherently must be segmented by some
means into intervals of time corresponding to utterances of words. The
transitions and other characteristics of signals, including silence intervals,
apparently do not offer an unambiguous basis for performing this segmen-
tation. This problem,- alone serves to restrict the use of words as basic
languge elements to the representation of words spoken in isolation. For
continuous speech, most of the effort in recent years has been applied to
the investigation of syllables or subsyllabic language elements.

-6-



If syllables are used as language elements, then some of the
difficulties associated with the use of words are ameliorated. The
correspondence between source states and syllables involves shorter
sequences of intervals during which speech signals do not change signi
ficantly, and the number of different syllables required to represent
a wide variety of speech is somewhat smaller* than the numhber of words
in a comprehensive vocabulary. Unlike words, syllables need not (and
probably cannot) be defined in a way which exactly corresponds to linguistic
syllabification. One method which has been under study** for several years
employs syllables defined as patterns of parameter values corresponding to
utterances of standard, short words. In this system, the parameters con-
sist of presence or absence of threshold crossings at the outputs of a filter
bank, sampled at several different times. The samples are taken at times
corresponding to significant changes in the speech signal. With 8 filters
and 5 samples per syllable, the parameter space consists of 240 possible
patterns. Very likely, only a srmall percentage of these patterns would
ever occur as the result of speech signals. in [6 ], for instance, it is
suggested that ten to fifteen different patterns arise from a given syllable,
and if 1000 syllables are required to adequately represent speech, then
approximately 104 different patterns of parameter values would be used,
assuming negligible overlap between syllables. This number places the
use of syllables within the realm of practicality. The design of "Exact
Match"' devices for associating patterns of parameter values with syllables
can exploit 'either-or", "always-present", and "never present.' conditions
for each of the 40 binary parameters corresponding to a filter an& sampling
instant. For any single syllble, the "never present" condition will exist

for most of the pa-rameters, thus allowing for construction of a relay "tree'",
consisting of only a few relays, for recognition of each syllable.

As remarked above, the two primary ways in whi,-h the use of
syllables constitutes an improvement over the use of words as language
elements are (a) the number of significant changes which occur in speech
*Signals during intervals corresponding to language elements is reduced,
and (b) the number of different language elements needed to adequately
represent speech is reduced. These changes permit the use of a smaller
parameter space, and simplify language element recognition (1000 syllables
instead of perhaps 5000 words for a comprehensive vocabulary). To some
investigators, it appears that the use of sub-syllabic language elements
would offer even greater simplification of the speech recogiition problem

U- is suggested in (6] that 1000 syllables would suffice to accurately

represent an unrestricted vocabulary.
S** 6 ].



by the Same means: reduction in the site of parameter space, and re-
duction in the number of language elements (i. e., the number of alter-
natives to which each pattern of parameter values must be assigned).
Representation of speech with phonemes, for instance, has been the goal
of several i-,vestigations. As with syllables, the definition of phonemes
for the purpose of automatic speech transcription necessarily differs
from the linguistic, definition. * For automatic speech transcription, a

phoneme consists of those patterns of parameter values which result
from utterances judged by either a human or other means to be a dis
tinctive speech sound. If the judgment is made by a human, then these
language elements comprise a phonetic alphabet. From the standpoint !
of ease of interpretation by a human reader, a phonetic alphabet evidently
would be quite satisfactory. Although the reader would be requiredto
learn the alphabet, this Can be accomplished quite easily. **

In view of the fact that words and syllables are composed of
sequences of phonetically distinguishable intervals of speech, it might
be expected that speech signals will change less during intervals assigned
to symbols in a phonetic alphabet than during intervals which would be
assigned to syllables or words. Thus, it is possible that a smaller
parameter space may suffice to distinguish between phonetic speech

elements than is required for the longer elements. However, it has
been contended that no matter what parameters are used, the variations
in manifestations of different speech sounds (in different environments,
from different speakers, etc. ) in parameter space are so large that
separation of these sounds is not possible. The question of feasibility
of separation of speech sounds (in a parameter space) raised by these
contrary points of view probably can be resolved in the affirmative only
by demonstration, i. e., by developing operations which actually produce
different outputs corresponding to different sounds.

If such a parameter space can be found, then the use of phonetic

elements to represent speech vastly simplifies the problem of associating
patterns of parameter values with the language elements. Approximately
40 phonemes are considered sufficient to adequately represent speech.
Thus, the number of alternatives for assignment of a pattern of parameter

values is only a few dozen, compared with a thousand or more, as would
be required for adequate representation with syllables or words.

*Ac-cording to[4], "a phone me is the minimum feature of the expression

system of a spoken language by which one thing that may be said is distinguished
from any bther thing which might have been said".
**It has been suggested that a phonetic alphabet facilitates readig, and has

been adopted for use in a few schools. See, for irstance, [1Z].



In keeping with examninug simple Methods first, we have directed
our attention on this project to the use of phonetic elements. As will be
Shown in Section 3, enough separation between some of these elements can
be achieved with a minimal parameter set, to indicate that addition of other
parameters will priovide essentially non-overlapping patterns of parameter
values corresponding to different speech sounds.

Rather than dwell on the distinctions between liniguistic and oper-
ationally defined phonermesi we have somewhat arbitrarily set up a phonetic
alphabet which consists of symbols corresponding to intervals of speech
during which very little change can be detected acoaustically. These symbols,
and exarmnples of words whose normal pronunciation produces speech sounds
corresponding to these symbols, are listed in Table 1. Also indicated are
phonemes whose utterances produce the speech sounds. The phonetic

elements are labeled in an arbitrary but suggestive way which allows for
convenient print-out frtom the general purpose digital computer with which
transcription methods are simulated.

2. z SELECTION OF SPEECH PARAMETERS

The problem of extracting clues from a speech signal which contain

sufficient information to identify the language elements being uttered can be
formulated and attacked in two somewhat.different ways. One approach to
the problem consists of drawing up a list of features of speech which are
phonetically distinguishable by humans and which it is believed will serve
to classify speech signals into sequences of phonetic language elements.
These features generally correspond to different states of the human speech
source, i. e., articulatory states of the vocal tract - fo r example, the vocal
cord vibration rate, the mouth opening, and positions of the tongue and lips.
Since the correspondence between source states and the generation of phonetic
language elements is relatively well knovm-, the representatio of speech as a
sequence of these language elements can readily be solved if a means can be
devised to measure automatically the phonetic, or "distinctive"*, features
of speech.

An example of such a list of distinctive features is shown in Table Z. **

As indicated in the table, determination of the presence of absence of ten

speech features is evidently sufficient for a human to distinguish between 35
different phonemes (which could be used to represent English quite adequately).

-!]



TABLE 1I PHONETIC ALPHABET

SOUND

De signation ON RU

Group Numtber Recomp IPA Phoneme(s) EXAMPLES CHARACTERISTICS

1 AW ALL

2 00 P OOL, WAILj

3 U U UL L

4 lip BIRD, MAKER

ARo FATHER, ODD VOWELS

.6 UH -A- SUN, SOFA

7 0 0, OU NOTATI ON, G0

'8 A a, ae ASK, SAT

9 EH E SET

10 I 1 SI 1T

11 E E ijBEET, YOU

12 L I.LULL
1113 R r REAR LIQUIDS

14 W w WAIL

15 m m MAIM NASAL

111 16 N n NOON CONSONANTS

17 NO, SING

18 B b BIB VOICED

IV 19 D d DEED STOP

20 G 9 GIVE CONSONANTS



TABLE 1 (Caont.),

SOUND

Designation - ON RU

Group Number Recomp IPA Phonemre(s) EXAMPLES CHARACTERISTICS

21 Z ZONE

V 212 Vv VALVE VOICED

23 TJ EITHER F RIC ATIV E

24 ZH VISION CONSONANTS

25 1T t TOOT UNVOICED

r VI 26 P p PE EP STOP

27 K k CAKE CONSONANTS

VII 28 H h HAIL

29 WH hw WHALE UNVOICED

VIII1 30 Ff FF

31 TH e THIN FRICATIVE

Ix 32 S CEASE

33 S H MISSION CONSONANTS

x 34 CH tf CHURCH AFFRICATES

35 DiJd JUIDGOE



The basic difficulty with this approach arises from the need to

develop operations which can be performed on the speech waveform to
determine the presence or absence of the specified distinctive features.
Although study of the mechanisms by which the speech source generates

language elements has yielded considerable knowledge of speech wave-

form characteristics, notably energy distributions in time and frequency.,

no reliable correspondence between such measurable characteristics and
the presence or absefnce of distinctive features (as judged by humans) has
as yet been developed. If this approach to the speech :processing problern
is pursued vigorously, then major emphasis is inevitably placed on attempts
to develop better ways to determine presence or absence of the distinctive
features.

Although this approach recognizes the basic problem of representing

speech in terms of measurable parameters, it tends to deify certain pre-

selected parameters as those which should be used to classify language
elements. Unfortunately, mechanizations of the judgment of parameter
values (i. e., presence or absence of distinctive features) have generally

proved unsatisfactory in one way or another.

The other general approach to the speech processing problem

differs from the first primarily in the way in which parameters are selected.
First, parameters are considered to be defined only in terms of operations

performed on the speech waveform. Although considerable guidance in the
selection pf suitable operations for distinguishing speech sounds is provided
by knowledge 6Y the manner in which humans solve the problem, no pre-

determined list of speech characteristics or distinctive features is drawn
up as an unalt'arable goal. Instead, several candidates for useful parameters

are selected not only on the basis of their possible potential for classifying
language elements, but also on the basis of ease of implementation. These

parameters are examined to determine which language elements can be
classified through their measurement. By study of combinations of para-
meters it is possible to pinpoint the language element confusions which

remain to be resolved, as well as the combination of parameters which

achieves the greatest language element separation. Generally, it is ex-

pected that a close examin ation of the parameter values associated with

language elements not distinguished 'with the initial set of parameters wil
yield suggestions for -other operations or parameters which will serve to

classify these elements. By systematically introducing new parameters for
the purpose of resolving these remaining language element ambiguities, it is

anticipated that an implementable set of speech parameters will be obtained
which is sufficient to classify language elements. We have pursuedthis
course using phonetic elements, or speech sounds, as the language elements.

tsee-Table 1in Seto 2.
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It should be emphasized at the outset that from the standpoint of
attaining or improving a speech transcription capability, speech parameters
should be selected on the basis of the degree to which different combinations
of parameter values are obtained for utterances of different sounds. This
does not mean that different parameter values will result for different sounds,
when parameters are considered individually. To illustrate this point,, con
sider the diagram in Figure 2. AS depicted in the diagram, two sounds may
result in values of two parameters which are quite similar, and involve ,on-
siderable overlap between the two sounds, when either parameter is measured
alone. However, Sim ultaneous measurement of the two parameters may
produce a non-overlapping distribution of the two sounds in the 2-difiesionalI
parameter space, as shown in the diagram. This rather elementary obser-
vation suggests that (a) the systematic introduction of new parameters, as
outlined above, will produce an efficient speech representation in terms of
storage requirements, and (b) essentially rules out the selection of speech
parameters solely on the basis of separation of single parameter values
arising from different sounds.

In this study we have undertaken initially to develop a set of speech
parameters which serve to distinguish primarily between voiced sounds.. The
speech mechanism for voiced sounds may be thought of as an acoustic pulse
generator (the vocal cords) exciting a multiply resonant cavity (the vocal
tract, including nasal cavities). The vibration rate of the vocal cords is
commonly associated with the pitch frequency. The several resoiances,
each of approximately 90 cps in bandwidth, are several times higher in
frequency than the fundamental and vary considerably from sound to sound
and exhibit some variation from speaker to speaker. These resonances
of the vocal tract, called formants, give rise to local peaks in the energy
spectra of speech samples. The location of these peaks may be regarded
as indications of formant positions for voiced sounds. It has long been
recognized that formant characteristics serve to distinguish fairly well
between the vowel sounds, and also carry Considerable information on
other voiced sounds. We have therefore chosen to use an estimate of
formant positions (location of spectrum peaks) as the initial set of para-
meters. The automatic extraction of local spectrum peaks can be accomr-
plished with a spectrum analyzer of the type commonly used in vocoders.

A second set of parameters has been selected to obtain information
on the shape of the energy density spectra of speech signals. Study of
"sections" of speech (i. e., energy density spectra) on an audio signal
analyzer, or observation of commutated samples of vocoder channel out-
puts displayed on an oscilloscope, provides a strong indication that different
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sounds give rise to significant differences in spectral shapes. Various
possibilities exist for obtaining spectral shape irformation. Rather than
develop a number of operations, each of which would be designed to detect
spectrum shapes associated with a few sounds, we have investigated
initially a set of parameters which is not only expected to provide useful
information on all sounds (inicluding unvoiced sounds), but also is easily
instrumented with a minimum of adjustment.

The two characteristics of any, possible unknown, function of a
quantity x (say, f(x)), which have come to be regarded as perhaps the
most important for characterizing the shape of f(x), are the first mom ent
about the origin and the second moment about the mean. Considering the
energy density spectrum of a speech sample as a fufnction of frequency
S(f)., these quantities can be defined for speech by

M I
spectrum mean

= 1/2 - spectrum spread

where M S S(f) df spectrum area, or spectrum zero-th moment

M f C SfS(f) df t spectrum first moment

and 02
atM f S O(f) df spectrum second moment.

It is expected that different values of ju and v will result from utterances
of different speech sounds. To obtain g and a it is sufficient to measure
M 0 , M I, and M .- each of which can be obtained through linear operations
on the outputs o a vocoder spectrum analyzer. While these quantities
may not be sufficient to differentiate between a11 sounds, it is anticipated
that their measurement will afford a significant imprQvement in trans-
cription capability over that attainable with spectral peaks alone, for
unvoiced as well as voiced sounds.



A third set of parameters, which would serve to advance trans-
cription capability significantly, consists of measdurernets to ascertain
those times at which parameters of the type described above are under-
going relatively rapid, changes. These changes would serve to segment
speech into intervals corresponding to either the language elements being
used to represent speech, or some other elerments from which the language
elements can be ascertained By processing the information obtained in

such a segment of speech before rendering a decision as to which sound is
being uttered, the reliability of decisions can be improved over the perfor-
mance attainable through decisions rendered more frequently.

Assuming that a set of measurements, or operations, to be per-
formed on a speech signal have been formulated, consider now the behavior
of speech as represented in parameter space. This space can be formed
by considering each parameter to be a coordinate direction in (for con-
venience in visualizatibn) a rectangular coordinate space. A speech signal,
s(t), could then be represented in vector form.

where v.(t) is the time-varying result of the operation on the speech signal
defined ty the i-th parameter; i. e., v(t) indicates the point in the n-dimenm
sional parameter space (formed by the n paramete v, v..., v ) into
which the speech signal is mapped, at the time instant t. 'As speechi is
uttered, the point v moves about in parameter space in some manner cor-
responding to the sequence of sounds being uttered. If a good set of para-
meters has been selected, then the point v will lie within different regions
of parameter space during intervals corresponding to different sounds.
Solution of the speech transcription problem requires that such a set of
good parameters be found, and an easily implemented rmethod be devised
for describing the regions in parameer space correspondi ng to the
different sounds.

As a first step towards simplification of equipment, it is possible
to quantize speedi into intervals of time during which the point v changes
insignificantly, Since a speech signal envelope has a bandwidth of about
25 cps, no significant information loss is suffered if the envelope detected
outputs of a vocoder spectrum analyzer are sampled periodically, at a
rate of 50 samples per second or higher. * Further, any parameters which

*Thisassertion has been verified through listening tests with speech synthe-
sizers utilizing periodic speech samples as inputs. Speaker fidelity is also

preserved.

-17-



are obtained through linear operations on the speech signal envelope
may also be sampled at the same rate with essentially no loss in infor-
mation. Thus, a speech signal, s(t), may be represented as a sequence
of positions in parameter space, described in vector form by

Vi(t) v l [v zi, v 2 I.., V], i - 1, 2,..,

where the subscript I jtI indicates the position in pararneter space occupied
at the i-th sample instant. The time separation of adjacent samples, A,
must be no greater than appro-irdately 20 milliseconds.

As a second step toward simplification of equipment, it will be
desirable to reduce the number of possible positions which can be occupied
in parameter space by quantization of the speech parameters. However,
in quantizing parameter values, considerable care must be exercised to
avoid the creation of ambiguities in parameter space which are large wi.
respect to the separation of different sounds (am represented in parameter
space). This problen deserves as much attention as the selection of
paramneters, since quaantization itself is one(,f the operations which defines
a parameter .

The potential of several operations constituting parameters of the
type suggested above for distinguishing between vowel sounds is examined
in Section 3. The critical importance of proper quantization of parameter
values is demonstrated with one of these parameters.

-18-



2.3 PATTERN RECOGNITION METHODS

The selection of speech parameters which take on different
values during intervals of speech corresponding to utterances of
different sounds constitutes the first, and most important step toward
achieving an automatic transcription capability. Once a set of para-
meters has been selected which serve to separate speech sounds in
parameter space, the problem of associating patterns of paramfeter
values with language elements arises. This problem consists of two
parts. First, the distribution of speech sounds in parameter space
must be ascertained; i. e., the patterns of parameter values which

arise from a speech sound (and preferably their relative frequency of
occurrence) must be found for all sounds in the phonetic alphabet.
Second, a satisfactory means of partitioning parameter space into
regions corresponding to the different speech sounds must be devised.
If it can be ascertained that there exist no points (i. e., patterns) in
parameter space which ever arise from utterances of more than one
sound, then this problem is trivial., Implementation of the decision
boundaries requires only that the equivalent to a table look-up operation
be implemented.

We shall refer to these two parts of the problem of associating
points in parameter space with speech sounds as (1) finding the distri-
bution of sounds, and (2) establishing decision boundaries.

The complicating feature of-the problem of finding the dstribution
of classes of events (in this case, sounds) as represented in a parameter
space, is that in most practical situations the classes are known only

lthrough a finite set of sampe events. The number of possible patterns

of parameter values usually exceeds by far the number of sample events
which can be obtained. Thus, solution of the first part of the pattern
recognition problem requires that some doctrine be applied to decide

whether any of the parameter patterns which have not occurred in the
sample events should be regarded as belonging to any of the classes, and
if so, to which classes. It must also be decided whether any of the sample
patterns arising from events belonging to one class might also ever occur
as manifestations of events belonging to another class. Since the number
of available sample events is usually small, one is faced with the necessity
_for onstructinmg some conception of the distribution of classes in para-

meter space, based on incomplete information concerning the class
association of a sparse collection of sample points. If the chosen parameters
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produce tight, widely separated clusters of points in parameter space
corresponding to the different classes, then a few samples should suffice
to "learn" the distribution of classes sufficiently well to avoid incorrect
associations of points with classes. However, if the parameters do not
produce such a situation, then either many samples must be obtaiined to
learn the nature of the distribution of classes, or if for some reason
this is not possible, a possibly hazardous estimate of the distribution
must be made on the basis of data at hand.

Perhaps the most complete description of the distribution of

speech sounds in parameter space whiich one can ever hope to obtain is
the probability density functions of points in parameter space, v, con-
ditioned on each of the N speech sounds, S., i 1, Z,..., N. If parameter
space consists of discrete points (as in the case when all parameter values
are quantized), then the probability density function of v, conditioned on
the i-th speech sound, p (]S.), is equivalent to the probability, P.(v I S.),
that the point v will occur in parameter space when the i-th speech
sound is uttered. The fact that a restricted number of sample patterns
may be available from which the distribution of sounds in parameter space
can be inferred, has motivated the development of a variety of methods of
estimating the nature, or particular characteristics, of the functions
Pi~v I Si), using a limited amount of data.

Once some conception of the distribution of speech sounds in

parameter space is obtained, the problem of partitioning the space into
non-overlapping regions corresponding to speech sounds can be attacked.
A method of establishing decision boundaries which has come to be re-
garded as an optimum method consists of calculating the likelihood that
a given point, v, has arisen from the i-th sound, S., i 1 1, 2 ,..., N, and

choosing the sound for which this quantity is highest. If the a priori
probability of occurrence of a speech sound is assumed to be the same
for all sounds, then this Maximum Likelihood method is equivalent to

the establishment of decision boundaries according to the following rule:

if Pi(V ?i ) : Pi(vIIS for i - 1, 2-.... N, then associatev

with the j-th sound.

Thus, the maxim_um likelihood method requires only the comparison of
values of the functions f vi(v I )  , which have already been established
as goals for the description of speech sounds as represented in parameter
space.

-20- 1



- A direct approach to the problem of estimating the functions
. I S.). , consists of constructing histograms over parameter space

froin a large number of independent samples of each of the speech sounds.
if one is able to obtain enough* samples, there appears to be no better
way to proceed.

Most of the pattern recognition methods which have been developed
represent attempts to exploit some a priori notions of the functlons,fP. (v' "S. in the estimation of certain features of these functions. For
instance, it may be assumfaed that each of these functions is unimodal, i. e.,
possesses a single local rmaximum. Under this assumption the use of
multiple order linear dscriminant functions may lead to good results. This.method involves the use of hyperplanes of the form yi (a. v) =
n

k l a.k v for the decision boundaries, where the coefficients, a.

(ail .. , a. ), can be determined in a variety of ways. Although

several hyperplanes can be used to bound each class (speech sound) from
each of the other classes, it has rarely been suggested that any more than
a single hyperplane f-or each pair of classes be used since even this numbe:
becomes intolerably large when the number of classes is greater than a
dozen or so. The rather great reliance which has been placed on the use
of linear discriminant functions for establishing decision boundaries in
classification problems, suggests that potential hazards associated with
their use have not been fully appreciated. if Ay of the functions

(vi( IS- are not unimodal, then a hyperplane may be completely in-

effective in partioning parameter space into regions corresponding to
different classes. Consier for instance the hypothetical distribution of

two sounds in a twomdimens ions! 1parameter space as depicted in Figure
3. Although these two sounds are non-overlapping and even tightly
clustered (in multiple modes) and widely separated, there exists no
straight line which can be drawn to completely separate the two classes.

Another popular method consists of using a single inear form
for each class. This method consists of correlating the pattern, v,
with a single representative of the i-th class, b., and choosing the
class for which the correlation is highest, after-normalization"

An attendant problemis that an impiementable, general criterion by
which the number of available sam ples can be judged "enough" or not,
has not yet emerged from the large amount of study which has been
directed to the question over the years.
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Choose the jl-.th class if

(b., v) (b.

ykI ~ 'I - I

for all i. Again, a variety of methods cani be applied to determine
suitabl e class representatives, b .. The most cornmon choike is the
.kY* mean vector of each class. This method provides the same
decision boundaries as would be obtained with the Maximum Likelihood
method, if all the classes have symmetric Gaussian distributions, with
equal variances in the parameter space. If the classes do not possess
such distributions, then this method may or may not produce good results,

*

Correlation with a stored reference constitutes an example of
the treatinent of pattern recognition as a two-step problem wherein
(1) a representative pattern is selected for each class, and(2) sample
patterns are associated with classes according to which representative

* is "closest" to the sample, where the "distance' between two vectors
is defined in some way. The attributes of a variety of methods of
m easuring distance have been studied extensively*, with the result
that as constraints are removed from the form to which the measure
of distance is limited, better recognition capability is achieved.

A related approach** conSists of establishing nonlinear decision
boundaries in parameter space, where coefficients of second, tliir4 and
higher powers of parameter values (in contrast with coefficients of linear

terms) are selected as a basis for fitting complicated Shapes around
regions associated with different classes, Again, a variety of criteria
can be applied to select values Cr the coefficients. This approach provides
much greater potential for separating multimodal distributions than linear
methods, but as a general ruie, more samples are also required to obtain
an accurate placement of the nonlinear boundaries.

There are, of coufse, many different pattern recognition techniques

which have been developed in the past few years, some of which offer come
putational simplicity in lieu of potential accuracy, and vice versa. Although

the techniques mentioned here encompass many of the methods which have
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been developed, there are many others which either exist now or which

will no doubt come along in the future. The question of which method
would be best for recognizing speech sounds can only be answered by
either (a) obtaining a large nuinber of samples of each sound from which

a good estimate of the functions f P (. S) can be obtained, or (b)

using each method and comparing the results. In the course of this study,
we have stressed the development of techniques by which sufficient data

can be collected to estimte the function-s [(- IS

Two further points should be em phasized, First, if speech
parameters can be found which produce no overlap between speech
sounds, and if the number of different combinations of parameter values
issnall, then there is nothing to be gained in using any special pattern
recognition method such as setting up a particular type of discriminant
function. It would be sufficient to compare a speech sample with a
"reference library" of patterns and associate the sample with that sound
to which the reference duplicate of 'the sample (if one exists) corresponds.
If an exact match does not occur between the speech sample and some
member of the reference library, then a variety of possibilities exist.
For instance, the sound corresponding to the last match could be assumed
to persist. Or if more than one speech sample is obtained for a soun d
(as is the case for most speech sounds) then the decision could be deferred.

The implementation, of such a method can be extremely simple
if the number of patterns which actually arise from speech is not un-

reasonably large. Although it has been contended* that speech sounds
produce too many manifestations in a parameter space to allow this
method to be employed, no proof of this contention ha-s been provided.
To do so it wouldbe necessary to show that al possible parameter
spaces would produce wide variations, since the variation within each
speech sound as represented in parameter space is determined by the
parameters themselves. On the other hand, the fact th t intelligible

speech is produced by speech synthesizers operating on parametric
representations of speech indicates that parameters may exist which

are relatively invariant for a single speech sound, and yet produce
different values for different soiunds.

*For instance in [6].



The other point is that if more than one decision is made during
an.'nterval corresponding to, a single speech sound, then, it is not necessary
that a match be obtained for every speech sample, in order to use the
Exact Matd'i method outlined above. Thus, it may be possible to reduce
the reference library to a relatively emall number of patterns of parameter
values, without sacrificing the accuracy with which speech sounds can be

J. identified. In the next section, results of a few experiments are presented
as a basis for an initial estimate of the degree to which a given size referm
ence library can be expected to cover (i. e., miatch) all possible satmples
of speech sounds.

T
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3. SPEECH REPRESENTATION IN PARAMETER SPACE

As discussed in Section 2. 2, it has been anticipated that positions
of local max ima in sample speech energy density spectra will provide
sufficient infqrmation to distinguish fairly well, between the vowel souhn-s,
and will also serve as useful clues for identifying other voiced sounds.
Also, it is highly likely that vowel souds cannot be recognized adequately
if some indication of formtant positions is not available. Therefore, we
have considered spectral peak patterns to constitute a minitmum parameter
set for voiced sounds. The ways in which these estimates of the formant
positions and other speech parameters have been extracted in this investj
gation are described in the first of the following two subsections. In the
second subsectlon, the results of an investigation to determine the distri-
bution of sounds in the resulting parameter spaces are reported for two*
combinations of parameters.

3.1 SPEECH PARAMETER EXTRACTION

Although intuitive conceptions of speech paranf ters can be described
in terms that are readily accepted and understood by everyone, the problem
of extracting numerical values of speech parameters in a way which will be
deemed satisfactory by even a few people is still a difficult one to solve.
For instance, to ascertain whether a particular method of extracting, i. e. ,
estimating, formant positions is satisfactory or not, it can be contended that
measurements of the vocal cavities in the speech source must be recorded
simultaneously and compared with the numerical values obtained for the
estitmates of formant positions. However, as pointed out in Section 2. 2, it
is not absolutely necessary that the question of how well a parameter is
being measured ever be raised. If one adopts the point of view that a para-
meter can be defined precisely only in terms of, the operations actually
performed on the speech waveform to obtain parameter values, then per
force the parameter is always extracted properly. The appropriate question
then becomes: "What are the operations to be performed on the speech wave-
form (i. e., parameters) to obtain different numerical values for the diff erent
speech sounds?".

To answer this question, the quantities listed in Table 3 have been
chosen as initial candidates fox svitable parameters to facilitate speech
transcription. In the course 9f this study, methods -of extraction have been
devised and applied for each of these quantities. The specific operations

performed on the speech waveform to obtain numeric ¢l values of these
quantities are described in the following paragraphs.
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TABLE 3 - LIST OF SPEECH PARAMETERS INVESTIOATED

Locationi of Peaks in Speech Sam~ple Energy Density (pl, PZg. "Pl8)
Spectrum (quan~tized into 18 frequenicy channiels) -
inidication of formants

,Ratio of outputs of high pas s and bandpasis filte r s -v

voicing indication

Area under Speech Sample !Energy Density Spectrum- -

Speech Sam~ple Signal Energy

First Moment of Speech Sample Energy Density Spetu"M
spectrum Mean 

etuM

Second Moment of Speech Sa mple Energy Density Spectrum--
with the first moment and spectrum area, a measure of
Spectrum Spread

Input Speech !Envelope Amplitude E

Normalized Speech -Envelope AmplitudeE

Sum of Magnitudes of Forward Differences of Samples of the AS
above parameters--speech segment boundaries
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The block diagram in Figure 4 indicates the major processing
steps involved in the approach being taken to speech transcription in this I
study. These are extraction and periodic samipling of speech parameters
such as listed in Table 3, further operation on and quantization of these
samples, and-associationi of patterns of the resulting quantized parameters
with phonetic ele'ments.

3.1.1 Description of -quipment I
To obtain &ta as well as demonstrate the feasibility of this approach I

to speech transcription, laboratory equipment has been constructed in the
C onmunication Sciences Laboratory for use. on this and other speed-i pro-
cessing projects. The configuration of this equipment for the parametersI
listed in Table 3 is shown in Figure 5. The three functions performed are
(1) speech signal conditioning, (2) parameter extraction, and (3) data format
conversion,

For signal conditioning, the first operation performed on a speech
signal is pre-emphasis of the high frequencies. The pre-emphasis network I
serves to accentuate the relatively weak higher formants of voiced speech
signals, and the sometimes extremely low-level unvoiced speech sounds.
Although several adjustments of the pr-eenphasis network were nade 
during the course of this study, its final characteristic consists of approx-
imately 6 db gain per octave above on( kcps, The envelope detected out-
put of this network, E, was studied as a possible candidate for a normalizing I
parameter for others.

After pre-emphasis, the speech signal is next passed through an
AGC network. This network constrains the output to less than 6 db vari-

ation for a 20db range in the input signal level. The envelope detected
output of this network, E , was also studied as a possible normalizing
factor for other parameterp.

After AGC, the signal is passed to an 18-channel parallel filter
bank. The characteristics of these filters are indicated in Figure 6.

In the current experimental setup, the !8-chanel filter bank output,
denoted £ = (fl' f .. .. f1

- ), is fed to five parameter extractors: the peak
picker, the zero-ih, first and second moment calculators, and the speech
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segment boundary indicator. The peak picker is a unit designed to locate
and identify those cha-,nels in which the energy density spectrum of the past
few milliseconds of speech possesses a local maximum. This unit operates
as indicated in Figure 7. The envelope detected output, xn, of the n-th
filter (channel) is feO to two adjacent comparators (C), one of which is pre-
ceded by a circuit (4 which passes the greatest of two inputs. One of these
two inputs 'is x , and the other input is a constant, K. The 4+ circuits serve
to prevent the indication of a peak in a channel unless the peak amplitude is
greater than the adjustable threshold, K. if both comparators produce outputs
indicating that the quantity x is larger than xn l and xn,, then a peak is in-
dicated at the output by routing the adjacent comparator outputs to an AND
gate corresponding to the n-th channeli I

in view of their central role in the identification of voiced sounds,
it is of interes-t to note the degree to which the peak patterns (as obtained
with Littons 18 channel vocoder and peak picking unit) correspond to other
methods of extracting indications of formant positions. Although a thorough
investigation has not been undertaken as yet, a few cornparisons with a
conventional method of extracting formant position estimates by hand show
that the peak picking method produces quite similar results. Specifically,
a method of measuring (ii e., estimating) formant positions which has been
employed for years involves tracing (by hand) indications of local energy
peaks as observed in spectrograms. This method can be compared with
the automatic peak picking method by simply quantizing the tracings into
the same 18 frequency channels employed in the peak picker, using the
same speech sample for each method.

The result of such a comparison is shown in Figure 8 for the word
"ONE", Although there are differenes in the two estimates of formant

positions, it is not clear which of these methods provides a more accurate
indication. In order to assess-accurately the quality of either method, it
would be necessary to make careful measurements on the speech source,

as well as detailed recordings of the speech source states (m outh opening,
tongue position, etc. ) during the utterance. It can be concluded from an
examination of several such comparisons between the two methods of esti-

mating formant positions, that the peak picking method tends to produce
formnt indications which resemble very closely those obtained by hand.

The moment extractors implement the calculation of zero-th,
first and second moments of the speech energy density spectrum. in
terms of the filter bank outputs, f = (fl' fI, ' ' , f18 ), these parameters
can be written
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Approximationis to these -quantities have been obtained through the use of
resistive adders. Actually, because of the relatively low skirt etiectivity
of the filters in the spectrum analyzer, the weightings ernployed in the
equipment have been changed slightly (from k") to comrpensate for the
overlap between channels. The adjustrment was made to produce an
appropriate output of each morment extractor for a sixiewave input. The
resulting M extractor produces an essentially constant output as a con-
staiit arplitude sinewave input is tuned over the 18 chan nels, and the M

and M extractors produce outputs as indicated in Figure 9.

The segment boundary indicator, AS, is designed to detect changes.
in speech sighals which correspond to transitions between speech sounds.
The current method under study consists of adding the magnitudes of the
derivatives of envelopes of the filter bank outputs:

18 dI d
k-

Although coprehensive testing of tra-scription methods employing this

means of speech segmentation have not been completed, the boundaries
created by thresholding AS do provide a reasonWAe correspondence between

Speech segments and utterances of phonetic language elements. This seg-
mentation is illustrated in Table 4 for the words "Two Three". The speech
segments indicated in this Table have been obtained by quantizin AS into
8 levels, and regarding the occurrence of the second or higher levels as
transitions.

Two more parameters, a voicing indication (V) and pitch (F) are

available in the arrent experimental equipment, but were not used in this
study since most of the data obtained was for voiced sounds, and pitch
provides little adiitional speech information.
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TABLE 4. SEGMENTATION OF "TWO THREE - WITH THE PARAMETER AS

KV Peak Pattern AS identification

-z 1 5 4 -5 6 7 8 9 10 11, 12 13 14 15 16 17 18-1_________

0 0 0 1 0 0 0 O 0 0 0 0 1 O 0 0 100 1
0~~~~~ 00 0 0 0 0 0 0 10 111,0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 10 1 _ To o o 0 o o o o o o o a o i o 0 1i 0 0 0i, -0

1 0 1 0 0 0 0 0 O0 0 0001 0 0 0 111
1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 '010:0,
1 0 0 1 0 0 0 0 1 0 1 0. 0 1 0 0 1 0 0 011 ...............
1 0 0 1 0001010 0 1 0 0 10 0010
1 0 1000001010 0 0 100010
1 0 1 0 0 0 0 0 0 0 0 0 1 o 0 o 00O
1 0 1 0 0 0 00 0 0 0 0 0 0 00 1 0 0 0,00o- 1 0 0 0 o o, 0 1 0 0 o o o o I o0 o 000

1 01 0 0 0 0 0 0 0 1 0 0 0 000
1 0 1 0 0 0 0 o0 0 1 0 0 1 0 0 1 0 0 000; i 0 i 0 0 ,0 0 0O, 0 0 0 0 10 o o 0 o o ,0,000
1 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 000 0

I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 00

I. 1 0 0 0 0 1 10 0 0 0 0 0 0 0 0 0 0 0 GO0I

SILENCE

0 0 0 0 0 0 0 0 0 0 0 0 0 1 Q 0 0 1 0 0o00.
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 000 TH
0 0 0 0 0 0 0 0 0 0 0 0 0a 1 0 0 0 1 0 001__.. ..
1 b 1 0 1 0 0 1 0 1 00 1 0 111 ...
0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 11
1 0 1 0 0 0 0 0 1 0 0 0 0 0 o 0 0 0 0 0oo
1 0 1 0 0 0 0 0 1 0 0 0 0 0. 0 0 0 0 0 001 UR
1 0 0 1 0 0 0 0 0 1 00 0 0 0 0 0 00O1
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 001
1 0 1 0 0 0 0 0 1 0 0 0 1 0 00 1 0 0 010
1 '0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0, 000
1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 000
1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 100 00

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0E00
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 000 EE
1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 ,0 0,0:0
1 0 1 0 0 0 0 0 0 0 0 0 0 ! 0' 0 1 0 0 Goo

1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 001
! 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 000
1 0 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 0 0 001 ....
N(te" Transition intervals are indicated by "' "
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As indicated in Figure 5 (and discussed in Section 3. 1. 2 below)
each extracted parameter is quantized to permit its representation as a
binary nuumber in a data format conversion unit. A digital commutation
converts the binary numbers resulting for all parameters into a sequence
of 5-bit samples suitable for direct insertion into the Recomp ii computer.
The pattern of parameter values resulting from a single speech sample is
fed into one computer word location (capacity 40 bits). For convenience,
the sampling interval, A, has been chosen equal to the time it takes to
complete one complete drim revolution in the computer, thus produeing i
60 speech samples per second. Since the computer has a capacity of
40,00 words, up to approximately a minute of continuous speech can be
processed at one time.

The signals produced at any point in the block diagram in Figure 5
are available for display. For instance, the (sampled) output of the peak
picking unit can be displayed on an oscilloscope as an intensity modulated
sawtooth waveform with 60 sweeps per second. This display can be re
corded to produce a representation of a segment of speech as a sequence
of "instantaneous" spectra. As illustrated in Figure 10, an easily inter-
preted segment of one second of speech is economically, permanently and
Conveniently stored in a single 3" by 4" print. In this recording, a spectrum
peak in a given channel is indicated by a white mark in that channel. Three
channels are represented between each adjacent pair of horizontal grid lines
in the photograph, Another parameter, the voicing indication, has been re-
corded in this photograph in the two positions above the top grid line in the
photograph. Until the data format conversion equipment became available
toward the end of this project, photographs of this type were used to obtain
data for the parameter space formed by spectral peaks and the voicing
indication. Before the peak picker itself was constructed, the program
outlined in Appendix I was used to simulate its operation on the Recompji
computer. Quantized sequences of sample spectra were obtained as inputo

to this program through the courtesy of r. C. P. Smith of the AFCRL
Co mmunications Laboratory.
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3. 1.2 Parameter Quantization I
As remarked in Section 2. 2, quantization of parameter values j

consitutes an integral part of the way in which a parameter is defined.
Unfortunately, however, time and equipment linitations have prevented
a thorough study of the effects of several different quantizations which j
would be reasonable for the parameters studied. Specifically, the way
in which each parameter has been quantized for experiments reported
for this study is indicated in Table 5. The extractor for each of the para- I
meters E, E , M and M_ was designed to produce outputs between 0 and
6 volts, and &-e eight quan zing levels were set at 0. 75 volt intervals, so
that a linear quantization of these five parameters was obtained. While I
this representation is quite reasonable for E, E , M , and M_, it is not
satisfactory for M_. Significantly better resolut ion would be obtained for
this latter pararn~eier with logarithmic spacing of quantizing levels (as
indicated in Figure 9). However, since only one A/D converter was
available in time for use on this project, a compromise was made in
favor of the linear spacing. The effects of different quantization of the I
spectrum moments are discussed in Section 5 in the light of experimental
results reported in the remainder of this section. 1

TABLE 5. SPEECH PARAMETER QUANTIZATION

Maximum Number of Different i
Parameter PrmtrVle

SyMbo Description Number Bits

Spectral peak pattern 2 3  13
V Voicing indication 2 1

Input speech amplitude 8 3

E Normalized speech amplitude 8 3
Spectrum area 8 3 1

M_ Spectrum First Moment 8 3
M_ Spectrum Second Moment 8 3 1

2I
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3.2 DISTRIBUTION OF SPEECH SOUNDS IN PARAMETER SPACE

To ascertain the distribution of speech sounds in the parameter
spaces created, by combinations of the parameters listed in Table 3,
data has been collected from three speakers using the equipment des-
cribed in the preceding section. Results are reported here for the
eleven vowel sounds listed in Table 1. To obtain a representative set
of speech samples of these sounds;, the following procedure has been followed
for each speaker.

The speaker was asked to read a word, list consisting of eleven
words. Each word on the list was chosen so that one of the eleven vowel
sounds would be spoken during the utteriance of the word, if the word were
pronounced "properly". To obtain a reasonably large numnber of independent
samples of sounds within a varying environment, each speaker was pre-
sented with 3 different word lists, at 5 different times, within an interval of
several days. The three word lists are contained in Table 6. This pro-
cedure produced a magnetic tape recording of 15 utterances of each of the
11 vowel sounds by each of the three speakers 495 utterances in all.

The next step consisted of playing back the recorded word lists

into the speech processing equipment. This resulted in a sequence of
sample patterns of parameter values representing the speech, stored in
the Recomp computer. This sequence of patterns was then typed out, and
the intervals corresponding to the vowel sounds identified. A hum -an observer
made the identification while listening to the original speech recording,
and using the following rough guidelines:

a) Use only those patterns which occur within intervals of
speech comprising readily identifiable sounds.

b) Use primarily those patterns which either persist over

several samples or which change slowly over an interval of
unchanging sound.

The typed representation of this sequence of patterns and a typical
assignment of patterns to a sound are illustrated in Table 7, using the
word "Neck", and the interval associated with the sound EH (e), Inter-

pretations of the binary representation of the parameters are given in
Table 8. All parameters have been represented in binary form for con-
venience only -- octal and decimal representations are also available
with the Recomp computer.
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TABLE 6 -THREE WORD LISTS EMPLOYED FOR VOWEL SOUNDS

Word List Word List Word List
Numer neNumber- Two Number Thre-e

1. HID .1. BASK 1. TOE

2. COOK 2. NOT 2. VAST

3. NECK 3. FRAUD 3. SET

4. BOG 4. NOOK0, 4. POD

5. FALL 5. EARL -5. TRUE

6. WOO 6. MOOSE 6. AWE

7. OAK 7. RUB 7. DEEDj

8. TURF 8. NO 8. F'uss

9. AS 9. DEATH 9. GOOD

10. BEAN 110. HEAP 10. PERK

11. BUD 11. SIT 11. RIBD

42m



Time Speech Parameter Pattern
I Sample M M M E E

No.0 1
1 1 010 OO0 000 000 OO ,00 000 101 010 00,1 001 011

2 1 0 10 000 00 000 100 000 110 001 0010 0 l, 110

3 1 010 0,00 0010 100 100 OO 10 1 010 010 011 100

4 1 010 000 000 10 0 010 01010 111 100 010 01 100

5 1 0G01 000 000 010 010 000 111 101 O1 011 100

6 1 100 10 0 000 010 010 000; Il 101 0i1 011 10,0

j 7 1 000 100 000 1O 010 100, i 10 Oi 1 G0 1 00

8 1 000 100 000 100 100 1010 ill 101 011 101 10,0,

1 9 1 000 100 000 000 10,0 100 111 101 011 I00 011

10 1 0101 000 0:00 001 000 000 1010 010 0.10 001 001 EH'(6.

I11 1 0101 00 00 000 000 00 001 0:00 000 ,00 0101

12 1 001 0,00 0'00 000 100 000 010 001 000 000 001

13 1 010 0 o0 000 000 0010 000 001 000 0010 000 00:0

14 1 001 000 000 o0 00 00 001 000 000 000 000

1 15 1 001 000 000 000 000 000 001 000 00 000 000

16 0

17 0

18 0

19 0 (SILENCE)
20 0

J 21 0

22 0 0:01 0,00 0010 000 000 000 0010 000 000 000 Oi

J 23 0 00 0100 0:00 001 000 010 110 101 0i 0,00 001

24 0 001 0100 0,00 000 10 001 010 010 010 000 001

25 0 00:0 000 000 000 100 000 001 000 001 000 000

Table 7. Representation of the Word "NECK" in Parameter Space
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The remaining step in the processing of speech data' to obtain
an estimate of the distribution of sounds in parameter space, consists
of listing each different pattern selected by the above procedure, along
with the number of times the pattern occurred within each sound. Frorn
such a histogram the regions in parameter space corresponding to each
sound, and the overlap between these regions can be ascertained.

3.2. 1 Parameter Space Usage

The number of sample patterns processed to obtain, a picture
of the distribution of vowel sounds, and the number of different patterns
which arose from each sounid individually, and from all vowel sounds,
are given in 'Table 9. As indicated in this table, most of the data
processing hat been performed *for the two parameter spaces formed
by (1) considering the location of spectral peaks alone, and (2) consi-
dering spectral peaks and the first three spectrum moments: M0
M1 and*M2 . These two spaces will be called "peak space" and "peak-

moment space", respectively. Since 60 speech samples are extracted
each second, we see from this table that a total of approximately 28, 23,
and 27 seconds of spoken vowel sounds were processed to obtain the
data for the three speakers. Thus, an average of approximately 2. 5
seconds of each sound was obtained for each speaker. Since each sound
was uttered 15 times by each speaker, an average of approximatey 10
sample patterns were obtained frotn each utterance of a vowel sound.

Perhaps the first question which arises in considering such a
collection of data is whether enough samples have been obtained to
warrant acceptance of the distribution of sounds in parameter space
provided by the samples, as an'accurate estimate of the distribution which
would be observed if an unrestricted number of speech samples were
processed. In an attempt to obtain at least a partial answer to this
question it has been conjectured that the num-ber of different speech
parameter patterns, N , which occur within an interval of speech, T,
tends to vary accordingto a parametric space usage curve:

N =N [l-"e-p o -

[9].
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where N is some number which is less than or equal to the total number0
of patterns which can possibly occur, a is a constant reflecting the rate
at which the number of different patterns encountered grows as the length
of speech observation interval is increased, A i s the sampling interval,
and n is the number of samples obtained in the interval, T. The quantities
NO and & are determined by the parameter space and the speech source,

A thorough exploration of the parameter space usage curve for

the spaces formed by the speech parameters considered during this
study has not been possible. However, based on a few points obtained
for a single speaker, the two values N 400 and a = 05 provide a
reasonably good fit for the generation of spectral patterns alone, i. e.,
for the parameter space formed by positions of spectral peaks. Since
the total number of spectral- peak patterns which can ever occur has been
found to be approximately 2 1 , it appears that not much more than five per-

cent of the points in this parameter space would ever be used by vowel sounds,
no matter how long an interval of speech is considered. A further in-
dication provided by N -= 400 and a t . 05 is that at least 75 percent of all

0
sample patterns produced by vowel sounds would be matched by the 308
peak patterns generated by the 1677 samples taken from speaker number
one (Table 9).

Although great reliance should not be placed on the parameter

space usage curve until further study is performed, it is encouraging
to note that 81 percent of the test samples processed for speaker number
one in the transcription experiments (described in Section 4) matched one
of the 308 patterns generated by the vowel sound data - - a di screpancy
of six percent between observed and predicted relative frequency of matching.

In the interest of avoiding undue bulk, the complete histogram for
each sound has not been included in this report. Rather, a few salient
characteristics of the sound distributions are described. However, as
an indication of the .type of distribution obtained, the complete distri-
bution of a single sound for a single speaker has been included in Table
10 for peak space, i. e., the parameter space formed by spectral peaks
alone.
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TABLE 10. COMPLETE HISTOGRAM FOR THRE SOUND EE(i) IN PEAK
SPACE (SPEAKER NUMBER ONE)

Pattern

Rank Channel Number No. of !
Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Occurrences

1 1 0 0 0 0 0 0 0 0 0 28 
z 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 16
3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 16
4 0 1 0 0 0 0 0 0 0 0 0 i 0 0 1 0 00 15
5 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 12

6 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 11
7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 8 
8 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 7
9 0 1 0 0 0 0 0 G 0 0 0 0 1 0 1 00 7
.0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 o6 0
i 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 6
12 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 4
13 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 4 1
14 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3
15 1 0 0 0 0 0 0 0 0 0 01 0 1 0 G 0 1 3
16 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 00 3 J
17 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2
18 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 00 2
19 100000000100010001 21
20 1 o 0 0 1 0 0 o 0 0 0 0 0 0 0 1 0 01 2
21 1 000. 0 0 0 0 0 0 0 0 0 0 0 00 1
22 1 0 0 0 0 0 0 0 0 0 01 0 0 0 0 00 1
23 1 0 0 000000 0 0 1 0 0 0 0 1 0 1
24 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 00 1
5 0 0 0 0 0 0 0 0 0 0 0 0 1 00 0 0

26 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
27 0 1 0 001 0 0 0 0 0 0 1 0 0 0 1 0 0 1
28 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1
29 01 0 0 0 1 0 0 0 0 0 1 0 0 1 0 00 1
30 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 00 1
31 0 1 0 0 0 0 0 0 0 1 0 0 1 00 ' 1 0 1
32 o 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1
33 1 0 0 0 0 1 0 0 0 0 0 1 0 01 0 0 1
34 1 0 0 0 0 0 0 0 10 0 1 0 0 1 0 0 1 1 1
35 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 00 1
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The high frequency of occurrence of some patterns within a
sotnd suggests that a large percentage of all speech samples might
correspond to a very small number of patterns of parameter values.
As an indication of both the regiton in parameter space occupied by
the vowel sounds, and the degree to which speech may be represented
by a small number of patterns, the ten most frequently occurring
patterns have been listed in Appendix it for each of the vowel sounds,

in peak space and peak-moment space for speaker number one. The
coverage of all samples obtained from the vowel data provided by
these 110 patterns, is summarized in Table 11 for each of the three

speakers.

As a final indication of parameter space usage, the distri-

bution of speech sample spectra with respect to the number of spectral
peaks is shown in Figure 11. The graphs in this figure indicate that the
majority of speech samples (of vowel sounds) produce spectra with
three or four peaks. Further, the relative frequency of occurrence of

a given number.of peaks appears to be approximately the same for the
three speakers.

in the course of this Study, some thought has been directed to
the question of whether the parameter space usage can be reduced (without
increasing overlap between speech sounds) by some sort of "warping"

performed after patterns of parameter values are obtained. One technique
for attempting to accomplish this reduction has been investigated for
peak space. Specifically, it has been conjectured that the most important
characteristic of formant positions consists of the ratio of the second and
higher formant frequencies to the first formant frequency. If this is the
case, and if the vocoder filters are logarithmically spaced, then allowable
variations in formant positions representing a given speech sound would
consist of "rigid" shifts of the peak-picked spectra. To test this idea, a
program has been written which maps peak-picked spectra into a subset
as determined in the following way. The first sample Occurring in a
speech recording is installed as the initial member of an "interm ediate

reference library". Each successive new spectrum arising in the speech
recording is compared with each of the spectra in this library, if a new

spectrum meets a criterion of "closeness" to any one of the members of
the library, then the new spectrum is associated with that reference library
member. if the criterion is not met for any of the library members,
thethehe new spectrum is installed as a new member of the library. " A

criterion of closeness based on the notion that slight, rigid shifts in
fornmant positions are allowable, has been tested using the Recomp II
computer. A description of the program is given in Appendix Ii These

tests ihdicate that while the number of different library _embers tends to
level off at a few hundred as speech samples are processed, more work
must be done to relate the criterion of closeness to the speech sounds

themselves.
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Figure 11. Reference Library Structu e (by Number of Spectrum

Peaks) for Three Speakers and Three Combinations of
Parameters (Vowel Soundsa Only)
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3. 2. 2 Overlap Between Speech Sounds in Parameter Space

As discussed in Section 2. 3, it is desired that a parameter space
be constructed in such a way that any given pattern of parameter values
always arises from the same sound. If this goal is achieved, then
parameter space may be partitioned into non-overlapping regions with
each region correspoinding to exactly one speech sound. However,
as is the case with r ,any other pattern recognition problems exhibiting
wide variations in ianifestation of the classes involved, omplete absence
of overlap between speech sounds (or any other language-elements) will
very likely never be attained with any parameter space.

The degree to which a given set of parameters can be expected
to provide adequate separation of speech sounds can be estimated in
several ways. One of the more informative ways would be to calcu ate
the probability that any given speech sound will be designated as one of
the other speech sounds, when parameter space is partitioned in a way
which tends to minimize this quantity. As discussed in Section 2. 3, many
methods exist by which such a partitioning can be approximated. If estimates
of the probabilities { P ( X. [Si)) are available then the maximun, likelihood
method Of partitioning can be applied with these estimates. We have applied
this method of partitioning parameter space, using the histograms for
each sound as estimates of { Pi( 1 8) . Letting vkdenote the k-th
distinct pattern of parameter values produced by samples of all speech
sounds (limited to vowels for the data reported here), the probability
that a single sample of speech corresponding to the i-th speech sound will
be associated with the j-th speech soand, -j, can be written (for i # j)

n

13 n. ki 7ij
1 k-I

where -ki the number of occurrences of the pattern X.k within

interivals of speech corresponding to the i -h speech sound,

ii f 0 k---
(k) thne n

0 otherwise
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n. sthe number of samples arising from the irth speech sound

and N

f = n. the total number of available speech Samples.
j1

Using the data collected for the eleven vowel sounds, the {ij} matrices
are given in Tables 12, 13, and 14 for three speakers, and for peak
space and peak-moment space. The diagonal elements in these matrices,
I ii, indicate the estimated probability of correct classification. In
some cases, the most likely tonfusions occur between speech sounds
which are often interchanged by speakers. Many people, for instance,
use A instead of EH for the first vowel sound in the word "HELLO'"
The result Of interchanging thes'e sounds would be a speech transcription

with a distorted accent. For non vowel sounds, of course, interchanges
can produce more detrimental results.

As with parameter space -usage, the adequacy of the number of available
samples may be questioned when considering such overlap matrices.
Although stich devices as the parameter space usage curve introduced

earlier may be employed in an attempt to answer this question, time has
not allowed for this type of study during this project.

The pairwise overlaps indicated by the {aij) matrices, do not

show the extent to which more than two speech sounds ever give rise
to the same pattern of parameter values. The number of different
patterns with p spectral peaks which ever occur within intervals of

speech corresponding to k sounds is indicated in Table 15 for each of
three speakers and for peak space. The entries in this table, coupled
with the {i.} matrices suggest that although approximately 30 percent

of the different patterns in peak space occur, at different times, within
intervals of speech corresponding to different sounds, most occurrences
of these patterns are associated with a single sound.

As a final indication of the degree to which the vowe-l sounds pro-
d uce different patterns in peak space, we have constructed bar graphs,

called spectral profiles, which show the percentage of sample patterns
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Probability (Percent) of Being Recognized As

u) !'A AH AW EE EH i 0 00 U UH UR -

A 80 02 02 00 0.8 03 010 00 01 04 01 EH
AH 02 92 03 00 0 1 010 00 0,0 0 02 00 AW
AW 08 ,04 79 00 05 01 01 00 01 01 01 A
tE 00 010 00 98 00 01 0,0 02 00 0,0 00 00
EH 15 02 02 00 5:8 17 01 0,0 03 00 02 I
i 03 O0 00 00 05 74 02 00 11 02 04 U I:
0 o 02 04 00 01 02 47 00 10 08 2 5 UR
00 00 00 00 04 01 01 0 04 8,8 04 00 0 1 EE
U 0:0 070 00 0O 00 06 07 00 71 10 07 UR
UH 06 03 02 00 10 02 03 00 04 67 02 A
UR 01 00 00 00 01 03 0 _ 01 04 02 88 _ U j

Peak Space

Probability (Percent) of Being Recognized A, _

-n A AH AW EE EH i 0 00 U UH UR

A 88 01 01 00 06 01 00 00 0 1 03 00 EH
AH 01 94 04 00 00 00 01 00 00 01 00 AW
AW 02 01 91 00 03 00 00 00 00 01 00 EH
EE 00 00 00 99 00 O0 00 0,0 00 00 00
EH 09 00 00 00 82 07 00 00 02 01 00 A
i 00 O 00 00 04 89 00 00 05 02 01 U
O 01 01 01 00 01 01 81 00 04 02 07 UR
00 00 00 00 01 00 00 03 97 01 00 00 0
U 00 00 010 00 00 03 02 00 89 02 04 UR
UH 05 01 02 01 05 02 00 00 02 84 00 A
UR 01 00 00, 00 01 00 04 00 02 01 9? Q

Peak-Moment Space f
Table 12. Estimated Relative Frequency of Correct and Misclassification [

of Vowel Sounds for Speaker Number One, and Two Parameter
Spaces.

Most Likely Confusion
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Probability (Percent) of Being Recognized As

.) A A H A W EE EH I 0 00 U UH UR *

A 75 01 01 00 22 01 00 00 "0 1 01 00 E-4

AH 07 68 12 00 01 010 03 01 01 07 00 AW
AW .06 03 74 03 02 01 07 01 01 3 01 0

" EE 00 00 00 99 00 010, .0,0 00 00 00 0
EH 012 00 08 00 81 07 00 00 00 02 00 AW
i 00 00 00 00 10 85 01 00 02 00 02- EH
o 00 00 10 00 02 02 58 00 11 0,8 10 U
00 00 o0 00 00 00 00 02 9,6 02 00 00 U
U 00 00 01 :01 01 01 10 .15 62 02 07 00
UH 00 08 04 00 0'6 01 0,0 00 01 79 01 AH
UR 00 00 00 00 01 06 09 02 04 02 77 0

Peak Space

Probability (Percent) of Being Recoignized As

.0 04 A AM AW E E EH 0 00 U UH UR

A 91 01 02 00 06 0o 0O 00 00 00 0:0 EH
AH 02 89 04 00 00 00 01 00 00 04 .00 AW
AW 01 08 80 00 01 00 07 00 00 02 01 AH
*EE 00 00 00 99 00 00 00 00 00 00 00
EM 06 01 03 O 88 00 00 00 00 02 00 A
i 01 00 00 00 01 97 00 00 00 01 00 EH
0 00 00 03 00 00 01 86 01 03 02 04 UR
00 00 00 00 00 00 00 02 96 02 00 00 U

U 00 00 00 00 00 01 09 05 82 00 03 0
UH 00 00 03 00 00 00 00 00 00 96 01 AW
UR 00 00 00 00 00 03 02 01 02 O 92 I

Peak-Moment Space

Table 13. Estimated Relative Frequency of Correct and Misclassification
of Vowel Sounds for Speaker Number Two, and Two Parameter
Spaces.

Most Likely Confusion
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Probability (Percent) of Bein~g Recognized As

US A AH AW E E 914 0 00 Uj UR UR *

A 189 04 00 00 04 00 00 00 0.0 03 00 E H
A'H 03 49 18 00 010 01 03 0 4 07 15 A W

AW 04 10 6Z 00 00 02 10 00 03 019 00 A H
EE 00 00 00 99 00 010 :00 00 010 00 00
E H 18 02 03 00 52 19 04 01 010 0:0 04 I
1 0 01 00 04 09 70 02 00 01 00 13 UR
0 010 07 12z 00 00 08 64 010 02 010 08 A W
00 00: 02 02 08 0,0 02 0 1 83 01 010 00 EE
U, 0 03 02 00 02 14 10 0:0 41 0;0 28 UR
UNi 019 14 05 00 01 00 00 00 0 1 69 GO~ AH

____ 01 02 00 00, 0 1 13 -01 00 0 1 81 1

Peak Space

m 6 A AHi A W EE EN H I 0 00 U U1H4 UR *I

A 92 01 02 00 04 00 00 00 0:0 02 00 t1H
A* H 00 65 12 00 0 1 00 04 00 010 04 14 URI
A W 02 07 73 00 00 01 10 00 00 07 00 0
EE 00 0 00 98 00 02 00 00 00 00 00 1
ER 0-O6 02 01 00 77 07 00 00 02 02 02 1
1 00 00 00 00 03 84 03 00 04 00 07 u A
0 00 02 08 00 00 02 77 00 05 01 04 0
00 00 01 00 00 00 00 02 98 00 00 0!0 0
U 01 03 03 00 01 04 07 00 57 0:0 25 UR
UH 06 09 01 00 01 010 00 00 00 82 00 A H

UR 00 01Ol 00 00 01 05 01 00 05 00 88 U

Peak-Moment Space

Table 14. Estimated Relative Frequency oforrect an4 is -1 ssificationI

of Vowel Sounds for Speaker Numiber Three., and Two Parameter
Spaces.

Most Likely ConfusionJ
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observed for a given speech sound, which possessed a peak in the k-th
channel, k = 1, 2 ..... 18. These profiles for the vowel sounds and the
three speakers are shown in Figures 12, 13, and 14. Although infor-
mation concerning combinations of peaks is not contained in these graphs,
in some cases the locations of fornants can be inferred. In the sound

EE, for instance, the suft of sanm-ples containing a peak in either channels

I or 2 accoutnts for essentially all samples,, this is true for all three

speakers. - This verifies the well-known fact that EE produces a first

formant in the frequency range 200 m 400 cps.

One is easily tempted to draw conclusions froi the spectral pro-

files other than simply the approximate locations of formtants as indicated

by the peak picker. In the sound EE., for instance, the relative frequency
of occurrence of a peak in the first channel may be used as an estimate

of the likelihood that an utterance of this sound will produce a peak in

that channel. Also, interpolation using the channel weightings indicated

in the spectral profiles might be expected to provide a more accurate

estimate of the formant locations for a given speaker. Further, in some

cases (for instance the second formant in the sound 00), the sum of all

weightings in a short frequency interval spanning no more than two or
three channels, and surrounded by channels with all zero weightings,
may provide an indication of formant strength.

From the data obtained on vowel sounds, it can be concluded that

peak-space provides a means of -epresentation which achieves adequate

separation of all vowel sounds except those sounds which are perhaps

the most difficult for a human to distinguish between. In peak-moment
space, further, but not complete, separation is achieved. It is very

likely that the reason for incomplete separation of vowel sounds in peak-

moment space is due solely to the way in which the parameters M, and

M2 have been quantized. If these parameters are quantized properly

(a s indicated in Figure 9),, then essentially complete separafion of
vowel sounds is expected, and further, the peak moment parameter

space usage could very easily be less than that reported in Section 3. 2. 1

above.
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4. SPEECH TRANSCRIPTION AND WORD RECOGNITION TECHNIQUFS

in this section, techniques for completing the final transforrnation,
i. e. from parameter space to the space consisting of language elements, are
discussed. The basic language element used to represent speech in this study
is a speech "sound", as described in Section 2 . In addition to methods of
transforming patterns of paraieter values into these speech soumds, tech-
niques for recognizing spoken woirds as sequences of speech sounds are dis-
cussed. Illustrative examples of transcription quality obtainable with the
simplest of these nethods using a miniminal parameter spasce (spectral peaks
alone) are included at the end of this section.

4.1 SPEECH TRANSCRIPTION METHODS

it has been suggested in Section 2. 3 that of all the different ways
that sample patterns of parameter values could be associated with language

elements, the maximum likelihood nethod (using histograms as estimates
of probability distributions) seems to offer the greatest potential for good
performance, if the number of speech samples used in constructing the
histograms is large enough. Assuring that enough samples can be obtained
(as is possible with the eqaipment described in Section 3. 1), it might be
concluded that only one step remains to complete the process of autorra tic
transcription. This consists of implementing the table look-up operation
dictated by the decision boundaries resulting from this maximum likelihood
method of partitioning parameter space into nonoverlapping regions corres-

ponding to different speech sounds. if essentially no overlap occurs in para-
meter space between speech sounds, this conclusion is correct. To produce
a sequence of sound symbols representing speech, it is only necessary that
each sample pattern of parameter values be compared with a collection of
labeled patterns (called a "'reference library"), and type the label corres-
ponding to the reference pattern which is matched by the sample. Since

most speech sounds (as defined on this project) span several speech samples,
the occasional occurrence of no match between a single incoming sample

pattern andany of the reference patterns will produce no significant loss of
information. One way of handling no-match decisions is to produce a standard
symbol, say "Y", indicating this fact; another option is to print out nothing.'
for the no-match decisions. An idealized transcription of the word "THREE",
using the latter option with the rudimentary exact match method applied to
each speech sample, would be:

TH TH UR UR UR UR EE EE EE EE EEE EE EE EEE
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in producing this transcription consisting of 15 sfound symbols, perhaps 25
speech samples might have been processed, with 10 no-rnatch decisions
within the word. Although it may be desired that some indication be re-
tained of the time intervals spanned by speech sounds (conceivably to
identify the speaker by recreating an accent), it is anticipated that the most
compact presentation would be desired for most applications. This can be
achieved by modifying the rudimentary exact match rhethod by printing out

£ a sound symbol only if it is different from the preceding symbol. This mod-
ification produces "TH UR EE" for the above example. As with n6o-match
decisions, any one of several methods can be employed to indicate samples

JjI taken during silence, or no-speech sounds, either indicating or n-ot indicating
the duration of such intervals,

If overlap exists between speech sounds in parameter space (i. e., if
it is likely that a sizeable percentage of speech samples will be misclassified),

fthen the rudimentary exact match method will produce a distorted transcriptibn.
Two avenues exist by which such a situation could be improvedi (1) additional
parameters can be extracted from speech signals, and (2) the way in which

decisions are reached can be changed. The first approach is straightforward
Augmentation of peak-space with spectral moments, for instance, produces
less overlap between vowel sounds, as indicated in the tables at the end of
Section 3. As soon as enough parameters are available to produce separated
speech sounds in parameter space, then the exact match transcription method
may be employedas described above.

If it happens that not enough parameters can be used to achieve

separation of speech sounds (without exceeding storage limitations, for in-
stance), then the method of associating patterns of parameter values with
speech sounds can be changed. The reason why there exists room for im-
provement over the single sampe exact match method based on maximum
likelihood is simply that sometimes several speech sampes are taken within

the intervals of speech corresponding to utterances of single speech sounds.
It is therefore not necessary to render a decision for each speech sample.
If some method is devised for segmenting speech into intervals corresponding
to utterances of speech sounds, then all of the speech samples taken within

each interval could be combined to produce a more reliable decision.

In any pursuit of this course for improving speech transcription

quality, several methods of combining speech samples deserve investigation.
Perhaps the most straightforward method consists of observing the sequence

of sounds occurring in an interval (as determined by the rudimentary exact
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match method of labeling each speech sample),, and associating the speech segrnent
with that sound which has occurred most frequently in the segment. This "plurality
rule", ineth d would require a relatively simple augmeintation of the equipment re-
quired for the rudimentary exact match method alone. Another techn ique consists
of selecting one of the samples occurring within the speech segment as a repre-
sentative for that segment, and choosing the sound to which the represe6ntative is
associated, with the maximium likelihood methoad applied to single samples. Two[
ways to, select such a representative are (a) the segment midpoint, and (b) the
sample occ,-rring nearest to the point in the segment at which the speech signal
is judged (by some operation) to be changing the least. The latter (quiescent) i
sample could be sa'lected in a variety of ways.

i
When only one decision is to be rendered for each speech segment, it is

also possible to combine the sequence of speech samples spanned by the segment
to produce a single, derived parameter value which would represent the combin- I
ation. This kind of operation would produce what might be called a derivedpara-

meter space consisting of a small number of dimensions. As ari illustration of
this approach, consider the sequence of s spectral peak patterns, * (p,1, -

Piz....' P' ) -- s, corresponding to a given speech s egment. These
samples ' e combined to produce a single pattern, i, - (u i , u2, ... ,u 1 8 ), j
accordng to the fornmula: -. IU2

u - j =1, 2 ... , 18.

i l 'I

The quantity u. reflects the percentage of speech samples (with the given segment)

which have a deak in the j-th frequency channel. If a sound produces mostly re-
petitions of the same peak pattern with-in a speech segment, then u will be essen-
tially identical with this peak pattern. If, on the other hand, a speech sound is
characterized by slight changes in peak patterns within a speech segment, then

will consist of some components which are less than one, but greater than I
zero. The amount and nature of the change in peak positions within the speech
segment will be reflected by the shape of the pattern, .

For any given method of combining speech samples with a speech
segment, there exist many methods of associating the resulting pattern u,
with speech sounds. As with individual speech samples, the method of
maximum li -kelihood using histograms as estimates of the distribution of
speech sounds in the derived parameter space, would probably provide the
most accurate association. However, it is quite possible that the large
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number of different patterns of derived parameter values which can result
from utterances of speech sounds will; preclude the collection of enough
samples of speedi to warrant the use of this method. It is likelyi, therefore,
that one of the other mnethods described in Section 2. 3 would have to be relied
upon. With the method of combining peak patterns described above, for in-
stance, the spectral profiles (Figures 12, 13, and 14) can be regarded as
representatives of the speech souds, and correlation between u and a given
spectral profile would provide an indication of '"closeness" between the speech
segment and the sound corresponding to the profile. The segment would be
associated with the speech sound whose corr esponding spectral profile pro-
duces the highest correlation with u.

In order to impl rnent any of these methods for cotmbitung several
speech samples, a method of segmenting speech must be devised From the
little study of the parameter AS (Table 3) which could be condicted after its
extraction was automatized toward the end of this project, it appears that
speech signals can be partitioned into time intervals roughly corresponding

to speech sounds by thresholding this quanitity. As illustrated in Table 4,
transitions between speech sounds can also be identified.

Before the efficacy of this or any other speech segmentation rm thod
can be ascertained, many experiments must be carried out using several of
the more promising methods of combining speech samples. Time did not
allow for such experimentation during this project. However, the exact match
transcription method was programmed for simulation on the Recomp !i com-
puter, and several tests have been conducted. As described above, the rudi-
mentary exact match method produces either a single phonetic symbol, or no
symbol if a sample does not match any of the patterns stored in the reference
library, Although tests were conducted for both peak space and peak-moment
space, the number of no-match decisions obtained for the latter space pre.
cluded extensive study. The reasons for the lrge nvmber of no--match
decisions with the spectral moment parameters are twofold. First, instead
of normalizing M1 and M 2 with respect to Mo , all three quantities were ex-
tracted and quantized separately. Thq quantiza.tion of M ° thus produced
considerable unnecessary variatioon in the measure of spectral spread, a.
Perhaps even more detrimental to proper extraction of moments, M 2 wasquant ized linearly, rather than logarithmically, thus producing high resolution

for unvoiced spectra, but very coarse resolution for voiced spectra. Both of
these problems were foreseen (an.d are easily remedied through the addition of
modified analogue-to-digita! convrters in the experimental speech processing
equipment), but ¢ould not. be avoided within the time span of this project, The
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transcriptions have therefore been conducted primarily for peak space only.

For this parameter space, the random arrangement of errors in transcriptions

using this method (with reference libraries constructed from data described

in Section 3*), produced relatively long sequences of symbols. Although the

correct speech sounds were represented more frequently than incorrect Sou ndsj
considerably study is required to make the identification. However, obser- I
vation of the general persistance of the correct sounds over several samples

suggested another option for "sm oothing"' the sequence of sounds, and combining

several. samples to produce a reduced number of symbols. Instead of typing

out a single symbol for the most likely speech sound, if the two or three most
likely sounds ajsociated with each speech sample are selected as' tentative

candidates,and ambiguities are risolved in favor of sounds which persist as
candidates over the largest number of samples, then fairly readable trans
criptions are obtained. Specifically, the following procedure for processing

rudimentary exact match transcriptions (with up. to three candidates for each
speech sample) has been followed:

(1) Print out a sound symbol only if the same sound is recognized I
on two successive samples.

(2) Repeat a sound symbol fo:. every succe:ssive-adjacer~t pair of I
occurrences of-the sound.

(3) Ambiguities are resolved in favor of'the sound which.either I
(a)-has occurred on the previous sample,. or (b) persists the
longest without interruption. !

(4) Symbols foi unvoiced sounds are inserted properly.

Examples of the resulting transcriptions obtained with this exact

match and smoothing method** are shown in Tables 16, 17, and 18, for three I
different speakers. The rudimentary- transcr iptions were performed on the-

Recomp computer, and the smoothing operations were cornpleted.by hand.

*For peak space, -as indicated in Table 9, the libraries consisted of 308
-patterns for Speaker Number One, 343 patterns for Speaer Number Two,

and 185 patterns for Speaker Nurber Three.
**From utterances of a test word list (Table 19). J
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TABLE 16. E9XACT MATC-H TRANSCRIPTION OF TEST WORD OLIST FOR
SPEAKER NUMBER ONE (PEAK-SPACE)

STADADTANCRITO AUTOMATIC TRANSCRIPTION

Z EE URO -ZII UR 0AHAll

00,0AH N 00o00u u/O U/0N

TH UR UREE EEEE TH 0 UR/O EEEE9E EEEE9EE

F 0 0UP, FOOOOO 0AW UR/O

F AHAEMHV F UHUH UHUH UH4UH U14O00V

S EH4VUNX S I/UH4/O V U/0 N

EH EET II EE T

N AH EMHIN N O/U UREEEE N

PL UHUNHS P LO0AHUHS

M AH ERN4U S M UII1EH NU S

T AliEHiI MS T E14EHU 1IM S

P UR IN T P URI/EHN T

EE KO00U LS EE E EEEKOO00OOOO0L S

ST AH UHP ST UHUH UH P

PAWINT PO AWEE NT

ST AHUR T ST UHUR T

AAWLFU UH UHNAW LF UUR

BEHEETU B EH/I EH/I T EHT/U /UH

EH EHKS AH/AW/UH1 911 KS

00OAi AEH O Q/UR7UH UH UR UH UH UH AW/EH/I

Z EE EEEE ZEE EEEE EEE EE

UR I PEEEE T UR URUR PEE EEEE T

TH UR00000 THO00UVQOQO0QO

Notes: ()ItroaeSounds are Underlined.

WZ AH/EH indicates "either AH or EH"I.
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TABLE 17. EXACT MATCH TRANSCRIPTION OF TEST WORD LIST FOR

SPEAKER NUMBER TWO (PEAK"SPAGE)

STANDARD TRANSCRIPTION AUTOMATIC TRANSCRIPTION

Z EEUPO ZEEUU UUUj

00O0AHN UR UR AMN

TH URUR.EFEE E TI4U U F EE 

FOOO 0UP, FOO0AHOO I
F AH AEH V F UHANHAW EREH V

S I IRKS S I II IKxS I
SEH VU N S ERERHVU N

EH EET T I
NAHEHIN N UH/EH/AO0EH-4EH N

PL UH UHS P LAH AN UH4S

M AHEH N US M AH/UNH14EHI S

T AH EH I MS TA EliEH M S

P URI1N T P IIN T

EE KO00U LS EE EE K UUU U U LS

ST AH UHP S TAR AliAH P

PAWINT PAWOINTI

S TAH UR T S TAW/O AW/O UR/EH/I T

AAW L FU AH A H L FOO

BEHEETU B I/UR EE TI I

EH EHKS EH EH KS
00 AH AEH I URUR AHAH A AEH

Z EEEE EE ZEEEE EE EEEEE 

UR I PEEFE T EP E EFFEE T

TH UROO0O00QO THO00U U U0

Notes: (1) interpolated Sounds are 'Undlerlined.
(Z) AH/EH indicates "either AH or EH"I.
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TABLE 18. EXACT MATCH TRANSCRIPTION OF TEST WORD LIST FOR

SPEAKER NUMBER THREE (PEAK-SPACE)

STANDARD TRANSCRIPTION AUTOMATIC TRANSCRIPTION

Z EE URO Z EHURkUR UPUR,

OO0OAH N 00 ER AW AW A/EH/IN

TH UR UR EtEEEE TH UU UU EE EEEEEEE

F 0 0 0 UR F 0/AW 0/AW 0/AW 0/AW AW AW

F AH AERV F AW AW AW A A A A EH EH4 V

SIIK S S 111 K S

S EH VUX S A AVEH EHEH N

ERIEET EH-/ I/UR EHi/I/UR EE EE T

N A14EH IN N ENAW AW AWAW EH/L/URN

PL TU14HS PLAWAWAWAWS

M AHEH N US MA A AEHEH N EHS

T AHEHI1M S T AWAW AW AW EHEHEH M S

P URIN T UR 11N T

EE KOOU LS EE EE EEK 0OOO L S

S T AH UR P S T AH/AW AR/AW AH/AW P

PAWINT P AW/EH AW/EH UR URN T

ST ARUR T STEHEH-AAAAT

A AW LF U A/EH A/ER AH/AW A/AW L F AW O/N

Z EHEE TU B EHIER/I /UR EETERHA A

EH EHKS ER ER EH/I/ UR K S

OOAH A Eli 00AH A AAW AW AAW II

Z EEEE EE ZEE EEEE EE

UR I PEEEE T EE E EEEE T

TH UROOQ00OO TRUUOO00O0

Notes: (1) Interpolated Sounds are Underlined.

(2)~ -- ARE niates "eithe AR- or ER".
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I
I

The entire procedure can be instrumented quite easily. I
Also. shown in Tables 16, 17, and 18 is a "standard" transcription of

the test word list obtained by a human transcriber after listening to several

utterances of the words. it is clear that many different transcriptions would

be equally acceptable and certainly possible as a result of variations in

accent, as well as variations in interpretation by observers. 1
The sometimnes perfect transcriptions obtained with this simnple

exact match transcription method, and using only peak patterns as the

extracted parameters, suggests strongly that the addition of parameters

refleting spectral shape would produce highly readable transcriptions of

all vowel sounds, and most voiced sounds.

4.2 WORD RECOGNITION METHODS I
Although automatic transcription of speech into sequences of

phonetic elements does not necessarily involve words as language elements

at all, the possibility of using a speech transcriber for voice control of

machines suggests that word recognition tests may afford a reasonable

method of evaluating speech transcription methods. Although word recog-

nition tests inherently involve not only the transcription methods, but the

word recognition methods as well, we have adopted this method -as was I
suggested by the procuring agency.

To maximize the probability of correctly recognizing spoken words, I
it is probably true that decisions on the presence or absence of words should

be based on intervals of observed speech which span the longest word in the I
given vocabulary. Furthermore, to maximize the information obtainable

from an interval of observed speech for the purpose of deciding which (if

any) of a given list of words has been spoken, no intermediate decisions

sho~ud be made. From both of these standpoints, the reCOgnitiOn of phonetic

elements as a preliminary to word recognition tends to degrade slightly the

potential for achieving accurate word recognition for a giveni vocabularly.

However, as pointed out previously, any attempt to utilize words as the

basic language elements for transforming speech into readable text creates

intolerable restrictions on the allowable speech which can be transformed,

involves basic difficulties in changing vocabulary, and requires that initial

decisions be rendered between a far larger number of alternatimvp- -thus

increasing equipm ent complexity significantly, Therefore, we must be

content with achieving whatever performance is attainable through the use

of sequences of sounds as the starting point for word recognition.

-70-



Two approaches have been considered for processing sequences of

sounds to recognize words, With the first approach, a number is assigned
to each sound in such a way that sequences of sounds corresponding to dif-
ferent words should be maximally differentiable from each other by the
decision rule with which words are to be recognized, If, for instance, the
word recognition method consists of correlating sequences of sounds with
stored sequences, each of which represents a sound, then such a numerical
assignment of numbers to sounds can have a relatively simple solution.
Specificaliy, if all of the words to be recognized are so different as to pro-
duce uncorrelated sequences of sounds (if transcribed perfectly), then ntumbers
should be assigned to sounds so that the variance of numnbers corresponding to
first s-oWn~ds of all words in the vocabulary is maximized. Similarly, the
variance of numbers associated with subsequent sounds in a perfect trans-
cription should also be naximized.

The secondapproach to the assignment of numerical values to sounds
is based on engineering considerations aimed at making the electronic in ple-
mentation of word recognition particularly simple. Assume that sounds
occurring in a specific word are assigned numerical values in agreement
with the chronological sequence in which these sounds occur in the word.
For instance, in the word "art", transcribed "AH UR T", if we assign numbers
to the 3 different sounds so that AH = 1, UR = 2, and T t 3, then a rudimentary
emct match transcription of the word "art" might appear as

AH AH AH AH UR UR UR T T

1 1 1 1 2 2 2 3 3

When associated with other words, the sounds AH, UR, and T may be assigned
different numerical values so that, in the particular word in question, numbers
assigned to sounds form a monotonically increasing sequence. This assign-
ment is readily implemented by assigning to each sound recognition output
unit (flip-flop), a voltage divider, where each tap on the divider is routedto
different word--recognition units. Numerical values of voltages appearing at
the taps correspond to the position of that soud in the sequence of sounds in
the word to which the output of the tap is routed. Hence, as s-hown in Figure
15, the machine implemented by the above description consists of a number of
different parts.

The -machine will be described by reference to a specific exanple,
wherein the recognition of only 2 words, the word "art" and the word "tar"
are required. ideal trans criptions of these two words contain three basic
sounds. With the recognition of each there is associated a flip-flop labeled
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FF(AH), YFF(URL), FF(T). As a result of each speech sample, usually only
one of the sound recognition flip flops will be ON. It thus generates a pair
of voltages at the two taps of the voltage dividers labeled AH and AMl, UR

- 1 2 1
and UR 2 , T, and T , depending on which flip-flop drives the attenuator.
The sulsactipts in icate to which word recognition device (one or two, cor
responding to the words "art" and "tar") the divider o'utputs are routed. The
numerical values of the coefficients signify the position of the corresponding
sound in the word whose number is denoted by the subscripts of the coefficient.
Coefficients with like subscripts are added, resulting in the occurrence of a
monotonic sequence of voltages at the output of that adder which corresponds
to the word presently uttered. Since sound sequences corresponding to dif-
ferent words will not be identical for good transcriptions, only one of the
surnming devices will have a monotonic voltage output as a fuzction of time.
This will occur in the particular device which corresponds to the wordbeing
spoken.

The differentiator that follows each summing device will have an
output which consists of a sequence of positive irnpulses if the right sequence
of sounds, corresponding to the word of present interest, is uttered. Mul-

tiple successive occurrences of identical sounds will result in a differentiator

output that still only consists of positive impulses, except that impulses will
be missing at times corresponding to the multiple occurrence of identical
sounds. The occurrence of negative impulses in any of the differentiator
outputs indicates that the word corresponding to the particular summer
differentiator probably did not occur. Recognition of a word should be based
on a comparison of the numerical values of the output of a set of low-pass
filters that follow the differentiators. The output of each low-pass filter is

proportional to the number of positive impulses minus the number of negative
impulses that occurred at the output of the differentiator over a period of time
eqial to the word length. Thus the word which resulted in the least number of
errors in the expected sound sequence is said to have been spoken.

Since a thorough ev auation of either of these approaches to word

recognition can be conducted only after a parameter space which separates
essentially all speech sounds has been constructed, tests have been confined
during this project to the easily simulated, engineering approach. A test
word list consisting of 25 words has been selected, and exact match trans-
criptions have been used as inputs to 25 word recognition units designe-d in
accordance with the illustration it) Figure 15.
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Several considerations have entered into the selection of a test
vocabulary. First,, for a specified vocabulary size, word recognition tends
to be easier to perform if the length and variation in length of words are
large. Therefore, to-insure that a high level of difficulty is established for

- testing word recognition and tra scription schernes., short test words should
be selected for the test vocabulary.

For a given vocabulary size, word recognition tei~ds to be less
difficult if many different sounds are involved in the words, On the other
hand, sound recognition may become more difficult as the nurber of allowable
speech sounds is increased in a vocabuilary. Since the test vocabulary is to
be used both as a reans of evaluating speech transcriptions and word recog-
nition methods, we have chosen not to limit the swouids in a transcription to
those involved in a test word vocabulary. Therefore, sound recognition
capability is made independent of the test word vocabulary, and will not be
affected by the distribution of sounds in these words. At the same timne, we
have chosen to select a vocabulary such that each word is not only short but
tends to sound like a few of the other words in the vocabulary, so that word
recognition, even by a human, may be a significantly difficult problem. The
Test Word List (TWL): appears in Table 19.

TABLE 19. TEST WORD LIST

ZERO NINE START
ONE PLUS ALPHA
TWO MINUS BETA
THREE TIMES X
FOUR PRINT Y
FIVE EQUALS Z
SIX STOP REPEAT
SEVEN POINT THROUGH
EIGHT

This vocabulary was selected to illustrate typical commands and data for use
in a computer-input application, as well as to satisfy the qualitative desiderata.
discussed above.

The ten spoken numerals have been used in the past* as test wordi.
The other 15 words in the Test Word List include several word groups with
comm on voiced and unvoiced sounds. The relative frequencies of occurrence

*For instance,[



t- I
30 .

a LLI

LL wm w

IXI
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of sounds in the TWLare shown in Table 10, along with the relative frequency
of occurrence of soui.ds in conversational speech. * Although no major effort
was made to match the distribution of sounds M the TWL precisely with their
distribution in conversational speech, a close correspondence was obtained
for all but six of the sounds. The 23 sounds involved in the TWL account for
approximately 87 percent of sound occurrenceis in conversational speech.

To obtain a statistically significant indication of word recognition
performance, five different utterances of each word in the test word list were
transcribed with the rudimentary exact match method (interpolating non-vowel
souds),, and each of the resulting 125 sequences of sounds were processed
through each of 25 word recogition units. The transcriptions were performed
by computer simulation, and the word recognition units were simulated by hand
calculations. Approximately 80 percent correct identification of words was
obtained, using only peak-patterns as the extracted parameters. While no
tests were possible using spectral motments, as well as spectral peaks, it is
anticipated that these sinple exact match transcription and word recognition
methods will produce greater than 90 percent correct identification of wordsi
taking into account unvoiced, as well as voiced sounds.

*As derived from Table 15 in [4], p. 96.
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TABLE 20. RELATIVE FREQUENCY OF OCCURPLENcE OF SOUJNDS

Sound Relative Frequency of Sounid Occurrenice (Perceft)

Recomp IAIn Test Word List IConversktiona1_Spe ch*-

AW I)1 .
00 u 32.
ti U 4 1. 0

UR4 3.0
AH a,8 3. 5
Li .A-, 5  4 6.0

00, OU 2 1. 7
A a, ae 3 Zi3
EH E5 3. 7

I I7 6. 3
EE i, j 6 6.3

L3 4.6
R r 33.

W w 3i 37
Mm2 3. 6

Nn 7 8.1
NG .~ 011

B b 1 0.6
I3 dl 0 4.6

G 0 1. 5
Zz 22.2

V v 21.
TJ 0 2. 5
ZH 0 0.0
T t 9 9.8

P p5 1.7
K k 3 3.6
H h 0 1.1
WH hw 0 1.1
F f 3 2.0
TH E) 2 0.7
S s 9 4.0
SH 1/ 0 0.7

c -j0 0.3
DJ d 0 0.3

*Frn [47
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5. CONCLUSIONS AND RECOMMENDATIONS

The basic approach to speech transcription investigated on this
project consists of (1) representing speech signals as sequences of
periodic sample patterns of parameter values, called "instantaneous
spectra", and (2) associating phonetic language elements with
selected sets of patterns. To ascertain storage requirements and
obtain estimates of the accuracy with which speech sounds can be
represented, laboratory speech processing equipment (Figure 5) has
been utilized to obtain data on several parameters ('Table 9), and the
representation of speech sounds in the parameter spaces constructed
from two combinations of these parameters has been investigated.
Methods of associating patterns of param ter values with speech soundsi
and sequences of speech soundawith words, have also been examined.
Although these methods were selected primarily on the basis of ease
of instrumentationj they exhibit high potential for providing accurate
transcriptions and word recognition. Salient conclusions and recom-
mendations for further development of these methods are presented
in the following paragraphs.

Accuracy

With respect to accuracy, Tables 12, 13, and 14 indicate that
parameter spaces constructed from spectral peaks and a few other
parameters reflecting spectral shape of speech samples can be expected
to provide good separation of vowels and other voiced sounds.
Specifically, the average estimated probability of correctly identifying
the vowel sound from which a single 17 rnsec speech sample is taken,
is approximately 0. 74, using spectral peaks alone (peak space),
Augmentation of peak space with the first two spectru moments

increases the ,stimated probability of correctly identifying a single
vowel sample to 0. 86. If the "plurality-rule" method (Section 4. 1) of
combining speech samples within segments corresponding to single
speech sounds, is used to reduce the number of decisions rendered per
unit time, then these individual sample probabilities could be expected

to produce a probability of correct decision (for vowels) of 0. 90 and 0. 98,
for peak-space and peak-moment space, respectively,*

*
These figures are based on the assumption that an average of five

speech samples occur within a speech segment.
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Recognition of 25 or more words by processing sequences of transcribed

speech sounds can be performed with relatively simple equipment (Figure i
15). The accuracy attainable is expected to be quite high when several
additional parameters are measured in conjunction with spectral peaks.
Using spectral peaks alone with the rudimentary transcription method for
vowel sounds and interpolating non vowel sounds, an 80percent probability
of correct recognition of one of 25 words has been obtained with the most
easily instrumented word recognition method.

St-orage Requi r-m ents I
The inumber of different patterns of parameter values which can occur

in speech within an interval corresponding to a single decision serves as
an indication of the efficiency with which speech signals are being pro- I
cessed, as well as the complexity of equiprent required to render the
decision automatically. With the rudimentary exact match method of
associating a speech sourd with each speech sample, the number of different I
patterns of parameter values is quite small. Using only spectral peaks in
an 18 channel vocoder, for instance, there are less than 7000 different
patterns which are possible. This would indicate that less than 13 bits I
of information are utilized for each decision. Moreover, taking into
account the fact that not all possible patterns of parameter values are
produced by speech signals, the information processed for each decision I
is even less. With spectral peaks, for instance, it is estimated (Section
3. 1) that no more than approximately 400 different spectral peak patterns
would ever occur in vowel sounds; i. e. only 9 bits per decision would be!
required for vowel sounds. With the addition of other speech parameters
the information storage requirements would increase, but evidently not
drastically. With the addition of the first two spectral moments (properly!
quantized as indicated in Figure 9), it appears that three additional bits
would suffice. I

Implem entation

From the standpoint of implementing an exact match transcription I
method, a reference library consisting of 1000 patterns can be handled
quite easily, The exploitation of either "always"' or "never"' conditions
for most of the binary quantities involved in patterns of parameter values,
prod _ces a decision "tree" with only a few nodes and branches, This
transcription method can be implemented readily with diode matrices or

relays.8 I
78- I
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Word recognition units can be constructed readily by the method
indicated in Figure 15 It should be stressed that by first transcribing
speech into sequences of speech sounds, essentially all restrictions on
the number and type of different words which can be handled are lifted.,
Of course, performance will tend to be degraded as the number of words
it is desired to distinguish between increases, but the construction of
word recognition units can proceed independently of the transcription
m method being enployed.

Re om mendationis

The data collection and analysis program reported here primarily
for voiced sounds should be carried out for the remalning speech sounds.
This would produce a complete indication of the transcription accuracy
attainable with spectral peaks and spectrum moments.

ITwo courses for improving transcription accuracy, augmentation
of param-eters and modification of recognition methods (discussed in

I ,Section 4. 1), should be pursued in the following way. First, additional
speech parameters should be introduced to produce a parameter space
in which all speech sounds are widely separated. In addition to normalizam_I tion of the spectral moments, the following parameters deserve
examination

dE.
(1) Derivative of Normalized Speech Envelope -dt

(Q) Silence Indication
(3) Low Frequency First and Second Moments
(4) High Frequency First and Second Monents
(5) Duration of Unvoiced Intervals
(6) Formant Time Derivative Polarity

With the addition of some of these parameters, the rudimentary exact
match transcription method, with smoothing (see Section 4. 1), should produce
acceptable transcriptions for the majority of speech sounds.

To attain a readable transcription for all meinbers of a phonetic
alphabet, it may be necessary to introduce another method of recognition.
Through the use of the parameter, AS (Section 3. 1. i), speech may be

segmented into short intervals corresponding to either utterances of
speech sounds, or portions of speech sounds. By combining all of the
patterns of parameter values occurring in a given segment, a more

reliable decision can be rendered. As suggested in Section 4. 1, several
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methods of combining the samples occurring within a segment should
be investigated thoroughly, including correlation of cumulative
spectral peak counts with replicas of spectral profiles, and plurality
rule of sou-nds within each segment.
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IAPPENDIX I

I Program for Simulating a Peak-Picking Formant Tracking Vocoder

I
The input to the program consists of a sequence of "instantaneous spectra"'

(samples of a vocoder output taken every A seconds) representing an
isolated spoken word. The number of spectra in each utterance depends
upon the duration of the word. Each spectrum is in 18 channel vocoder
format with the energy in each channel quantized in 3 bits, and is repre-
sented by the quantities, aI .... ai". The object of the program is to
locate for each spectrum the frequency channels in which, the energy exhibits
a local maximum. The output for each spectrum consists of 18 bits, one
for each vocoder channel, where a "one" indicates a peak and a "zero",
no teak, in the corresponding channel. In addition, one bit for the voiced-
unvoiced decision and three bits for the number of peaks are included. A flow
for this program is shown in Figure 16..

The method of locating the local peaks may be described briefly as follows:

There is a peak in channel n if a ai > anda >a a and
ftn~ n n-lV 0

a9 are assumed equal to 0, to allow peaks at the ends. If there are
several channels of equal magnitude surrounded by channels of smaller

magnitude, there are two alternatives. If the number of equal channels is

odd the peak is placed in the middle channel. If the number is even the
middle lies between two channels. In this case the peak is placed on the
side of the middle which has the largest surrounding channel; of if the two
surrounding channels are equal the peak is placed arbitrarily on the low

frequency side.

A result of the peak-picking operation is shown in Figure 17.

The voiced-unvoiced decision is made using a linear discriminant.I
I
I
!
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No. of

Origina _pcru ekSpectrum Voiced Peaks

ii 1.....231.1. .......... 1.0 3

34. 1..........13 11. .1. 1,.........1 ... 1 3
45111i....... 1142 11 .1......... 1 2

24222....126,21. .1..........1I.. 1 2
13232 .151 ............ 1.13

.12433 ......1152 1. ... 1....... .1.12
1113223... i. 11252.. . 1.. 1.I.......1.13

r3 .1334..112421i . .1. ....... a 3

.242..Z222421. ... ~1...1. 13

1. .22. 2341. 22241.. 1.....1.. 1 4

21132. 11411221211. 1.. 1 .... 1. .I. . 1i.. 1I

52. 11. .13..2121121. 1. .. .. 1.1.15

53.21 ... 3.. 111121. 1.. 1..1......1.. 1 4

53.1 1 121. 21, 1. a.1 .. .1. .1. .1. 1

53....21.311.22. 1....... 1. 1 1 4

53..111.311.11. 1 ........l.. 1 ... 1~ 1 4

63 ....... 11.211.n1 1......... I1... 1. 1 4

52 ...... 2. .1. 1. 11. 1........1..1. 1. 1 1 5

62 ..... . .. ..1 ........1 1. . . 2

6...11....1

Figure 17. Three-Bit Quantized and Peak-Picked Representation
of the Spoken Word "ONE"
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APPENDIX 11

T -en Most.VFrequently Occurring Patterns in Peak
Space and Peak-Momnent Space, For each Vowel

Sound and a Single Speaker

A. PEAK SPACE

The ten most frequently occurring patterns of values of the
local spectral peaks are listed below for each of the eleven Vowel sounds
listed in Table 1.

Spectral Peaks Relative
Frequency

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of Occurrence()

111 21. 3
1 1 114.2

A 11 1 4.
I 1 1 4.3

111 11 1 4.3[
1 1 1 13.3

1 1 1 12.8
1 1 2.4

Spectral Peaks Rltv
Frequency

Sound 1 23 45 67 89 0112 13 141516 1718 of Occurrence- o)

11 1 14.9
1 1 1 9.4

11 8.8
1 1 4.4

1 11 1 4.4
AR K 1 3.9

11 1 3.2
I 1 2.8
1 1 1 2.2

111 1 2.2



Spectral Peaks Relative
Frequency

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 i-5 16 17 18 of Occurene(o)
9i

1 1 1 9.3,

1 1 1 1 5.1
i i 4,7

1W 4.7
AW 1 1 4.71 1 1 4.7

1 1C1 4:7t 1 14.2
1 4.2

ISpeetrai Peaks - etivRelative

SpctalPeksFrequency o
Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of Occurrence(7o,)

111 16.4
1 1 9.4

1 i 9.4
1 1 1 8.7

EE 1 1 7.0
J 1 1 6.4

1 1 4.7

1 1 1 4.1

1 1 1 1 4.1
1 3. 5

Re lative
Spectral Peaks Frequency

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of Occurrence(Wo)

1 1 1 1 15.6
1 1 1 1 7.8

I I 1 1 7.8

EH 1 1 1 4.9
I 1 1 4.9

1 1 1 3.9
1 1 1 3.9

1 1 2.9

11 1 1.9
1 1 1.9



Spectral Peaks Re lative
Frequency

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of Occurrenrce(o)

11 1 24.9
1 1 1 1 7.7
1 1 1 4.8

1 1 1 3.8
1 1 1 3.8

1 3.8
1 1 1 3.8

1 1 1 1Z.9i i 2, 9

Relative

SiectraI Peaks Frequency

Sound 1 2 3 4 5 6 7 8 9 10, 11 12 13 14 15 16 17 18 of Occurrence(Vo)

1 8.8
1 1 1 1 6.6
1 1 5.2

0 1 1 1 4.4
1 1 1 2.9

1 1 1 1 2.9
2.2

111 2. 2

Spectral Peaks Relative

Frequency

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of Occurrence (%)

1 30.6
1 16.5

8.8
18.8

00 1 17.1
1 4.7

!1 2.4

1 1 1 2.4
1 1 1 1. 8

1 1.24
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Spectral Peaks Relative

Frequency
Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of Occurrenc,(o)

J 1 1 1 1 12.8
1 1 1 1 11.8
1 1 1 1 5.9T 1 4.9'

U 1 14.9
1 3.9

I 1 1 2.9

r PRelative

Soectral Pea' 1Frequrency
S ound 1 2 3 4 5 6 7 8 9 10 Il- 12 1-3 14 1-5 16 17 18 of Occurrence (~

1 1 1 11.5
1i 1 1 10.8

1 1 1 1 8. 3
i i i 5,, 8

UH 1 1 1 1 5.8
-1 i 4. 1
1 1 1 1 3.3
1 1 1 1 3.3

1 1 1 1 2.5

Spectral Peaks Relative

Frequency

Sound 1 Z 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 of Qccurrence(1o)

1 1 26.8
1 1 7.9

1 1 7.3
1 1 1 7.3

UR 1 1 6.1
I 1 1 4.9

1! 4.3
1 1 4.3

1 1 3.7
83.71
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B. Peak-Moment Spae

The ten most frequently occu rring patterns of values of the local
spectral peaks and thb first three spectral moments are listed below
for each of the eleven vowel sounds listed in Table 1.

Spectral Peaks M M M
Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16, 17 18 0 1

1 1 1 1 1 00 010
1 1 1 1 110 011 001

1 1 0 110 100 010 

A I I 00 0 1 o0,
1 1 1 0 , 011 01011 1 1 111 100 010

1 1 1 1 111 10 1 01

1 1 111 100 010
I 1 1 110 011 010

1 1 1 111 101 011 [
1 1 1 110 011 001

Spectral Peaks

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 M0  M1  M2

1 1 1 10 1 01 001
1 1 110 011 001
1 1 10 0 1 1 010 0
1 1 1 110 100 010
1 1 1 1 11 100 010

AH 1 1 1 1 1 111 100 01 0
1 1 101 011 001
1 1 1 110 100 010

1 1 1 111 100 010 [
1 1 1 111 100 010

[
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Spectral Peaks

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 mI m2

1 0 0 11 001! i i ii 00 1i

1 1 1 111 011 010
AW 1 1 110 011 00 1

1 1 1 1 1 100 010
1 1 0 011 001

1 1 i01 010 001
1 1 0 100 010

SpeCtrai Peaks M M
Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0 1 2

1 1 1 10 0 010 010
1 1 101 011 01,0
S1 1 01 011 0 10

1 1 01 100 011
EE 1 1 101 1 0 1 1

1 1 101 011 001
S 00 011 001

1 1 011 010
1 1 1 110 011 010

1 1 110 100 010

J-Spectral Peaks

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 M0 2

111 1 1 111 100 010
1- 1 1 1 111 100 010
11 1 1 010 001

1 1 1 111 101 011

EH 1 1 1 !1 100 0I1
! 1 1 1 111 110 100

1 1 111 100 011
1 1 1 110 101 011

1 1 1 111 101 011
1 1 1 111 100 010
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Spectral Peaks

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 M M2

1 1 1 1 111 10 010
1 1 1 110 0 1 00
1 1 1 1 I1 10 011

1 1 1 110 011 010

1 1 111 0 01 11 0 111
1 1 1 1 11 011 010
1 1 1 0 100 010

1 1 1 1 0 ,011 01
1 1 I 100 010

1 o 110 011 010

Spectral Peaks

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 0;

1 10 010 001
1 1 110 010 000
1 100 001 000
1 1 10 010 000
1 101 001 000

0 1 1 10 001 000
1 1 110 010 0,01

111 011 010
1 101 010 000
1 110 0 10 001

Spectral Peaks

Sound 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 M0 M 1 2

1 101 001 000
1 1 101 00 1 000
1 100 001 000
1 1 100 001 000

00 1 101 001 000
1 1 00 0 01 00 0
1 101 001 000

1 1 01 001 000
100 001 000

1 1 100 001 000



Spectral Peaks

Sound 1 2 3 4 5 6 7 8 9 10 11 1 13 14 I5 16 17 18 M 1 2

1 1 1 1 110 011 001
I 1 1 1 00 011 010

1 110 011 ,001
1 1 1 1 1 0 0 0

1 1 1 1 111 100 010
U 1 1 i 1 i11 011 010

1 1 110 010 001

11 1 01 000 000

Spectral Peaks M M M-

Sound 1 2 3 4 5 ,6 7 8 9 10 1 12 13 14 15 16 17 18 0 2

1 1 11 100 010
I 1 1 1 00 010
1 ! 1 1 100 010

111 100 010
11 1 11 1 01 011

UH 1 1 1 1 110 011 010
1 1 1 1 0 011 001

1 1 1 1 11 100 011
1 1 1 1 11 011 010
1 1 111 101 011

Spectral Peaks
Sound 1 2 3 4 5 6 7 8 9 10 2I 12 13 14 15 16 17 18 M M i  M

I100 1 21 1 110 010 001

1 1 10 0 11 0 01
1 1 10 0 1100 0 1

1R 1 1 10 0101 00 1
Va1 1 10 0 11 0 01

11 1 10 0 1100 0 1
1 1 10 0101 00 1

1 1 1 11 0 11 100 1
1 1 1 11 0 11 01 0
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APPENDIX ii 1
A Program for Mapping Peak-Pi-cked Spectra

into a Reduced Space

The purpose of this program is the simultaneous generation of an

"'intermediate reference library" of "instantaneouis spectra" in the 18

bit peak-picked format, and recording of speech data as a sequence of
intermediate reference library numbers.

This program, designated as SMREF, sets up a library of reference
patterns for speech data based on the following rules for similarity
of two input spectra:

1. Voiced-unvoiced designation must be the same.

2. The number of peaks must be the same.

3. If the number of peaks is zero or one, the spectra must

be identical.

4. If the number of peaks is greater than one but less than seven,
corresponding peaks of one spectrum must not be more than one channel
away from those of the other and the direction of the shift in peak locations
must be the sam-e.

Input is a series of tapes; the first record in each section indicates
the number of vectors to follow, where each vector is a one word record J
describing the peak patterns, i. e., the location of the peaks, the voicing
indication and the numbtr of peaks. The input is compared against all
previously established reference patterns. If a match if found, the
"matching count" for the rerence is "up-dated. If no match, the input
is stored as a new reference pattern. For each input the number of the
matching reference spectrum is typed,
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After all input spectra have been examined, the library is sorted and af three sectional tape is punched. The first contains the unvoiced patterns
arranged according to number of peaks followed by the "count" of unvoiced
patterns. The second consists of the same data for the voiced sounds.
Section three is the unsorted reference library and all necessary controls
for continuing the library generation at a later date. A copy of the sorted
libraries is also typed.

There are the following restrictions:

1. Program is designed for eighteen channel data with a
maximum of six peaks.

2 There are approximately 3, 000 (decimal) locations reserved
for the reference pattern library. If an extraordinary number of input
vectors is used, there is a possibility of exceeding this space. (Loc. 0045. 1
indicates the storage location for the storage location for the next reference
pattern.. This should not exceed 6777. 0).

The program has been w-itten for the Recomp II Computer for

Contract AF30(602)-264l, February, 1962.

Flow charts for this program are shown in Figures 18, 19, and
20.
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